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CHAPTER ONE

BACKGROUND

The advent of multiphase engineering materials, in particular fiber
reinforced composites, has opened the door for tailored engineering
materials. Depending on the nature of packing, order and symmetry of the
different phases, a wide range of material properties and structural
stability can be achieved. To address the technological needs for structural
applications in space and on the ground wherein multidirectional
reinforcement and high level of thermo-mechanical stability are required, a
great deal of effort has been devoted to the development of strong and tough

composite material in the past decade.

It has been recognized that fiber architecture, being the structural
backbone of composites, has much to contribute to the structural
toughening of composites. As it is often found in nature, e.g., bee's
honeycomb, and crystal of reticulated cerussite, a well ordered triangular
packing with material symmetry provides the most efficient and
structurally stable material system. To reduce this material concept into
practice, it has been found that fiber replacement by textile processes in an
economical and practical way to create the desirable fiber architecture.




For example, as shown in Figure 1.1, a triaxially woven fabric produces a
well regulated, symmetric network of hexagons. As a result, this structure
has the highest level of planar stability and isotropy comparing to other
planar fibrous assemblies. For thick structures, on the other hand, the
concept of close-to-cubic (CTC) symmetry was explored for hardened
structure for re-entry applications utilizing a 4-directional reinforcement.
Reducing the close-to-cubic symmetry concept into practice in our
laboratory by a three-dimensional braiding process, the concept of
structural toughening by 3-D fiber architecture has been successfully

demonstrated.

Another significant outcome of our research is the demonstration of the
direct formation of structural shapes by the 3-D braiding process. The
idealized unit cell structure from a 3-D braided 1-beam is shown in Figure
1.2. While the idea of net shape, tough composite is very attractive for
structural applications, the question often asked is the compressive

resistance of the 3-D integrated structures.

The major concern, as seen in Figure 1.3, is the apparent structural
weakness at yarn cross-overs or where the yarns are bent. To address this
problem or to elevate the level of compressive resistance of this 3-D
structures, it appears that an additional reinforcement system or an

incompressible phase would be needed.




sccrion BB

Figure 1.1 Development of Planar Stability by Triaxial Weaving.
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Figure 1.2 Close-to-Cubic Symmetry by 3-D Braiding.




Figure 1.3 Isometric View of Yarn Geometry in a 3-D Braid.




As we experience in ball bearings and many other applications, it is well
known that, for the same material, spherical shape provides the best
compressive resistance. If one introduces a spherical phase in the
reinforcement system and allows the spheres to bear the compressive
stresses, a hybrid geometrical structure having tensile, shear and
compressive resistance can be produced. This can conceivably be achieved
as shown in Figure 1.4 by the superposition of a closest packing of spheres
in a tetrahedral/octahedral fiber network.

Equally as important as the development of the High Symmetry Composites
(HSC) system, the issue of prediction of macro-structural performance
from microstructure on a unit cell level must be addressed. Although some
initial work has been carried out on the modelling of unit cell geometry of
3-D braid composites, there is currently no satisfactory theoretical
framework linking microstructural unit cell to macrostructural
performance as called for in a recent ASME meeting. The mesomechanics
of HSC is quite necessary in order to provide guidance to the creation of the
multiphase material system and to explore the potential of structural
systems from these materials for end use requirements yet to be defined.
What is needed is the precise identification and quantification of the unit

cell geometry with a combination of spheres and fiber network.
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8
Treating this cell as a finite structural unit, a Fine Cell Model (FCM) can be
developed. The FCM, on one hand, account for the detail design of the unit
cell structure and, on the other hand, it allows the exploration of global
structural behavior, therefore bridging the communication gap between

material scientists and structural mechanicians.

Accordingly, the objectives of this proposed study are:

1. To demonstrate the feasibility and potential of composite
mate~ial system with high level of tensile, compressive
and damage resistance by the concept of High Structural
Symmetry.

2. To establish a theoretical framework for the design,analysis and

prediction of structural performance of the High

Symmetry Composite through Finite Cell Modelling.

To achieve our objectives, this study begins with a review of the technology
of 3-D fiber architecture. To provide a basis for discussion, the 3-D fiber
architectures are classified according to the level of symmetry. After
establishing a framework for the modelling of the geometry of the
mechanical responses of high symmetry structures are modelled by the
finite cell methodology. In order to transform the geometric concepts to
reality, a method for the fabrication of the high symmetry structures is
illustrated. It was planned, in the subsequent Phase of the program, that
the fabrication method will be demonstrated and employed to produce high
symmetry ceramic matrix composites. Verifications of the geometric and
mechanical models were also planned in the subsequent Phase of the

program by mechanical testing and geometric characterization.



CHAPTER TWO
3-D FIBER ARCHITECTURE

In order to develop a classification syste:n for 3D fiber architectures one
needs to examine the state of the art of these architectures. The result of
this examination provides information which can be used to develop new
classes based on the distinguishing and the-common properties of the 3D
fiber architectures which are produced today and which will be produced

tomorrow.

This chapter provides the reader with a review of the state of the art of 3D
fiber architectures. The different fiber architectures are grouped in this
chapter by their traditional classifications.’

Knits
Knitting involves the interlooping of yarns. The knitting process involves
two steps; the formation of loops in the yarns, and the linking of the formed
loops together with needles. There are two basic types of knitting. These
types are called warp knitting and weft knitting. Basic warp and weft knit

structures are shown in Figure 2-1.




Basic Warp Knit Stitch [20)
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Weft knitting is the oldest form of kmitting. The first weft knit machine was
invented about 1589 [12). Weft knitting involves the formation of a whole
row of loops from one yarn. These loops are then pulled through the
previous row of loops to form the knit. Most apparel is formed by weft
kmitting. Hand knitting is a special case of weft knitting.

Warp knitting is always machine generated. T}m first warp knitting
machine was invented in 1847 {12]). In warp knitting many yarns are feed
as a sheet to the knitting machine. Each yarn goes through its own needlé.
The needles simultaneously form a loop and interloop of the yarn. This
knitting style possesses a higher production Tate but also possesses a lower
extensibility compared to weft knitting.

Today, warp knitting is the most popular type of knitting for three
dimensional textiles. The general form of the warp knit style used in
engineering applications is Multiaxial Warp Knits (MWK). MWK typically
are composed of lay-ins in the 09, 90°, and 10 directions. The lay-in are
knitted together with a warp knit stitch. The lay-in yarns usually possess a
much larger cross-sectional area than the knitting yarns and are therefore
the major load bearing component of the fabric. These fabrics are
produced by many companies including: Kyntex of Sequin Texas, HiTech of
Reno Nevada, and Bean Fiberglass Company of Jaffrey New Hampshire.

The warp knit stitch typically used in MWK is a chain or tricot stitch. Both
stitches are shown in Figure 2-2. For many applications the tricot stitch is
the most popular. This stitch allows for more flexibility in the shear and
weft directions (36]. In a certain type of MWK, weft insert warp knits




Tricot Stitch (32])

f

Chain Stitch [32]

Figure 2-2
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(WIWK), the weft inserted yarns can form sinusoidal or linear paths.
WIWK are distinguished by two sets of lay-in yarns orthogonal to each
other. A WIWK with nonlinear weft yarns and a MWK are shown in
Figure 2-3.

Most MWK machines can precisely control the placement of the warp
knitting needle. However impalement of weft inserted yarns in the bias
direction often occurs. Impalement breaks and displaces fibers. Thus
impalement results in reduced in-plane strength and structural
consistency in the fabric.

The Karl Mayer Textile Machine Company of West Germany has invented
a WMK machine which does not impale yarns (36). This affords a higher
yarn to fabric translation efficiency. However these fabrics are more
voluminous than the other weft insert warp knits. This bulkiness leads to a
lower fiber volume fraction. This lower fiber volume fraction leads to

reduced composite strength.

MWK knitting allows for much design flexibility. This flexibility partly
arises from the variability in the direction, and linearity of the weft inserts.
The effect of the direction of yarn placement on the strength efficiency of a
fabric is shown in Figure 2-4. In this figure the strength efficiency in the
machine (fabric takeoff) direction and the weft (cross or normal to machine)
direction are shown as a function of lay in yarn orientation at various
volume fractions, ranging from 0% to 40%, of longitudinal lay-in yarns.
The strength efficiency is defined as the fractional part of the strength of the
yarns transferred to the fabric (21). When tested in the machine direction,
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Strength Efficiency of a MWK as a Function of Lay-In Yarn Orientation [21]

Figure 2-4
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the strength efficiency decreases as the lay in yarn angle increases. An
increase in the longitudinal yarn fiber volume fraction increases the
strength efficiency in the machine direction. Since the weft direction is
normal to the longitudinal lay-ins, an increase in longitudinal yarn fiber
volume fraction decreases the strength efficiency.

The effect of linearity can be discussed by comparing linear and nonlinear
4450 weft inserted warp knits [24]. Linear weft inserted warp knits possess
an higher initial modulus than nonlinear. The strength of the nonlinear
knit is slightly higher in the 0 and 90 degree direction. However, the bias
strength of the linear knit is much greater than the nonlinear, since in the
linear knit more fiber is aligned in this direction. The flexibility of these
knits can vary greatly depending on the number of layers and the direction
of the weft yarn inserts.

MWK can produce fabrics up to 1.3 centimeters thick. By using another
technique, a thick warp knitted fabric can be formed. The Aerospatiale
Company of France pioneered this technique.

Aerospatiale developed a three dimensional circular knitting machine.
Presently there are two models of this machine [1,2,8]. These machines are
capable of producing the fabric geometries shown in Figure 2-5. The
different knit geometries are a result of the different templates used for the
longitudinal yarns. The two different template structures are shown in
Figure 2-6. These templates define the paths of two of the three constituent
yarns. In the first geometry, which will be referred to as XXYZ,
circumferential yarns are laid in and radial yarns are knitted. The radial
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Aerospatiale XXYZ Geometry [7]

Figure 2-5
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XXYYZ Geometry Template

Aerospatiale Templates
Figure 2-6
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yarns form a series of chain stitches on the outer side the the fabric. In the
second geometry, XXYYZ, two sets of radial yarns form chain stitches in
different directions and on alternating levels. Both these geometries
provide high tensile and shear strength in all directions. The XXYYZ
geometry is more flexible as a result of the substitution of a second radial
knitting yarn for the circumferential yarn.

The fabric formation process used for each geometry is slightly different.
This paragraph describes the formation process for the XXYZ geometry (7 ].‘
First metallic rods are inserted in the template in the longitudinal yarn
position. Then the radial yarns are knitted [y an hook-shaped needle which
is inserted between the longitudinal rods and the circumferential yarns are
feed into circumferential corridors. The apparatus on which the template
is set rotates, allowing the knitting of the chain stitches and the laying
down of the circumferential yarns. After each layer is formed, it is
compacted. After all the radial and circumferential yarns are added, the
longitudinal wire rods are pushed out using lacing needles. The eye of both
needles then hooks a yarn strand and inserts it into the proper longitudinal

position.

The following is the fabric formation process for the XXYYZ geometry (8].
First metallic rods are inserted in the template in the longitudinal yarn
position. Then the two radial yarns are knitted by hook-shaped needles
which are inserted between the longitudinal rods. The two different radial
knitting machines move around the template structure. After each layer is
formed, it is compacted. After all the radial yarns are added, the
longitudinal wire rods are pushed out using lacing needles. The eye of




each needle then hooks a yarn strand and inserts it into the proper
longitudinal position.

Although warp knitting is the most popular form of knitting for three
dimensional textile structures, Courtaulds produces a modified computer
controlled weft knitting machine to knit three dimensional preforms (36).
This modification allows individual needle conf.rol. This control is
important with high modulus fibers. The brittle nature of high modulus
fibers cause them to be more susceptible to breakage with variations in
tension. The individual needle control maintains constant tension on each

yarn during the knitting process. -

Examples of the complex three dimensional shapes that can be knitted with
this process are shown in Figure 2-7. A substantial amount of the fiber lies
in a loop configuration. Since the loop configuration is comprised of so
many orientations, this configuration is similar to that of a random mat.
Because of this configuration, these fabrics possess moduli comparable to
those of a random mat. The tensile strength of these fabrics is lower than
that of a random mat [39]. The key advantage of this structure is the ability
to form integral structures without fiber discontinuities at key joints in the
structure. These structures are three dimensional in shape but their

thickness is small.

In general, because of the toughness needed by the knitting yarn, there are
some material restrictions on this yarn. With the weft insert warp knits,
the knitting yarn is usually a polyester yarn with a diameter a tenth the
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. .
Three Dimensional Shapes Produced by Weft Rnitting [39)

Figure 2-7
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size of the weft yarns. The presence of the loop make knits tougher and

more comformable to complex shapes.

Braids

Braids are formed by the intertwining of yarns. The basic braiding method
is shown in Figure 2-8. The intertwining is accomplished by the crossing of
yarns on individual yarn carriers. The oldest recorded use of braiding is
between 1500 and 1000 B.C. [12]. Although this une has been used
since prehistoric times, in general, it has never been as popular as the
other textile techniques. One of the factors that limited the use of braids is
that the braiding machine size must be much larger than the actual braid
produced. However in the field of three dimensional textiles, braiding
techniques are becoming very popular. This popularity is a result of their
high damage tolerance, delamination resistance, and conformability.

Three dimensional Euclidean braiding involves the steps shown in Figure
2. This sequence can be performed on circular or rectangular looms. In
this process yarns gradually move through the thickness of the fabric,
through alternate track and column motion. Thus the yarns traverse a
circular path with a zig-zag motion. The resultant yarn path, projected
onto the braidplane, of one yarn following this sequence in both types of
looms is shown in Figure 2-10. The three dimensional path of one yarn in
an Euclidean braid is shown in Figure 2-11. The discrete lattice shown in
this figure is used to locate the yarn in the braid. The presence of this
lattice has generated the nomenclature, Euclidean braiding, to describe the

track/column braiding process.




Basic Braiding Motion [19]

Figure 2-8
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Yarn Path in the Braiding Plane in a Rectangular Loom [31]

Yarn Path in the Braiding Plane in a Circular Loom (31)

Figure 2-10
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Isolated Path of a Single Yarn in a 3D Braided Fabric [31)

Figure 2-11




After each set of track and column movements, the yarns are compacted.
In this process body diagonal yarn pairs resulting from a track/column
movement are compacted against body diagonal pairs arising from the
previous track/column motion. The compacting motion intertwines the
yarns. The braiding process just mentioned is the result of many
developments in braiding machine technology. The following paragraphs
trace the development of three dimensional braiding machines.

This first patent for this method of yarn placement was granted to Bluck in
1969 (3]. Bluck's machine moved the tracks and columns of the braiding
plane with cams connected by gears to a driveshaft. Each yarn is fed into
the braiding plane through holes in individual yarn guides. The yarn
guides move in the braiding sequence as mentioned above. The speed of
braiding is controlled by takeoff rollers which grip the fabric a certain
distance from the braiding plane and pull the fabric away from this plane.
A schematic of this machine is shown in Figure 2-12. .

- In 1973 Maistre patented a braiding process [27]. In this process, the yarns
are attached to a rigid frame which arranges the yarns into a vertical net.
The distance bet!yeen the yarns comprising the net is constant in the
vertical and horizontal directions. In Maistre's machine the yarn feeding
mechanism is not in the braiding plane and there is no takeoff roller.
Braiding occurs as a result of the alternate displacement of the row and
columns of the yarns. Though Maistre's machine differs from Bluck's in
the yarn feeding mechanism and the absence of a takeoff roller, the

resultant yarn path of both machines is the same.

27
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In 1982 Florentine improved Bluck's braiding machine. Florentine's
machine [13], called "Magnaweave”, uses solenoids to move the yarn
carriers. The yarn carriers are properly aligned with respect to each other
by bar magnets on the yarn carrier. Each yarn carrier contains a spool of
yarn. A series of pins to beat up the braided fabric are added between the
braiding plane and the takeoff rollers. These pins are removed during each
braiding sequence and are engaged again after said ‘sequence.

In 1986 Brown (6] addressed the problem of machine jamming in the
braiding machine of Florentine. Jamming is minimized by moving a track
or column of yarns mnjers sequentially, and by applying a tamping stroke
after each movement to insure that the yarn'-carriers are in their proper
place. Brown's yarn carrier design is also different. In Brown's setup, a
finite length of yarn is attached to a smaller length of an elastic yarn. The
looped end of the elastic yarn is attached to a hook on the yarn carrier.

In 1988 Brown [5] modified the design of the circular braiding machine to
allow for interchangeable rings of the same diameter. These rings replace
the concentric rings used in Florentine's machine. The capacity of the
machine as measured by the number of rings could not be easily expanded

with the concentric rings.

Another three dimensional braiding process is the Two Step Braid. The
Two Step Braid was patented by Popper of DuPont in 1988 [29]. This
apparatus is shown in Figure 2-13. The Two Step Braid is composed of
axial and braider yarns. The axials are placed in the fabric forming

direction and remain approximately straight in the structure. The

29
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Two-Step Braid Apparatus (29]

Figure 2-13
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braiders move between the stationary axials in a special pattern, which
cinches the axials and stabilizes the shape of the braid. The path of one
yarn during a braiding sequence is shown in Figure 2-14. The zig-zag
motion of a yarn constitutes one sequence. Although the resultant yarn
path is the same for the Two Step Braid as for the other three dimensional
braids mentioned above, the method of achieving this path differs. The Two
Step Braid path differs from the other 3D braids by passing each braiding
yarn through the whole fabric thickness during ee;ch movement. In the
Two Step process a smaller number of braiding sequences is needed for th'e
yarn to travel back to its initial point in the braiding plane.

It is important to note that with the Euclidean braiding process, non
braiding yarns, called longitudinal yarns can be positioned between the
columns, as shown in Figure 2-15. These yarns are subjected only to a
slight zig-zag motion as the rows move back and forth. The effect of this
zig-zag motion upon the straightness of the longitudinal yarns has not been
examined. These yarns act in the same way as the the axial yarns of the
Two Step Braid. Since the longitudinal yarns are more aligned with the
fabric's vertical axis than the braiding yarns, these yarns increase the
tensile strength of an Euclidean braid in this direction. The normalized
tensile astrength of 3D braids with and without axial yarns is compared in
Figure 2-16. The value of the normalized tensile strength is determined by
dividing the tensile strength measured by the number of yarns in the braid
and the breaking strength of a constituent yarn.

Figure 2-17 shows the effect of varying the braid angle of both braid types.
The braid angle is the angle a braiding yarn makes with the vertical axis of
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2-Step Loom Design

Figure 2-14
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the braid. Though the tensile strength of the Two Step braid is greater than
that of a Euclidean braid (with no longitudinal yarns), the comformability
and compressability of a Euclidean braid is greater than that of the Two
Step braid.

Nonwovens

Two dimensional nonwovens are formed by fiber entanglements. The

36

means of entanglement may be chemical or mechanical. Nonwoven felts

are considered the oldest textile structures produced. The first machine
made nonwoven, paper, was made in 1804 (37]. Today nonwovens form the

largest percentage of the two dimensional industrial textile market.

The simplest three dimensional nonwoven is an assembly of chopped fiber.
This nonwoven is held together in composite form by the matrix material.
Ideally this structure is the most isotropic reinforcement geometry. But
usually the resultant fiber orientation is skewed to favor melt flow paths.
This deviation is a result of the fabricating conditions of the composite. A
composite with this geometry is tough, but possesses a small strength
translation efficiency. The fibers act as crack deflectors, but do not carry a
significant part of the load. The load bearing capacity of the fibers is
increased if the aspect ratio of the fibers is large. As the length of the fibers
increases, the capacity of the fiber to transfer stress along this dimension

necessarily increases.

Three dimensional nonwovens lay ups are formed from continuous yarns.
Thus these nonwovens possess a high strength translation efficiency.

These fabrics differ from the nonwovens mentioned before. In most three
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dimensional nonwovens the constituent yarns are laid ir from various
directions and are not entangled. These nonwovens form stable structures

by means of the resultant frictional forces between fibers.

In 1971 General Electric introduced "Omniweave” [4] In this nonwoven the

path of the yarns forming the fabric is straight through the thickness

direction. When a yarn reaches a surface, the x-y orientation is reversed.

The z directional motion is maintained. A three. directional orthogonal

placement of the yarns was most common which this loom. However a'
four directional yarn placement along the body diagonals of a parallelpiped

unit cell can also be achieved. -

In 1974 Fukuta was granted a patent [14] for a process to make a orthogonal
three dimensional fabric. Fukuta's apparatus and the fabric made with
this machine is shown in Figure 2-18. The yarns in the y direction are
fixed. A yarn inserted in the xy plane follows the path shown in Figure 2-
19. P is a binder yarn which maintains the two yarn diameter distance
between the z yarns in the y direction. A new set of z yamns is inserted after
each x yarn. A set of z yarns is inserted by the simultaneous lowering of

the z curved arm and raising of the z' curved arm.

In 1976 Crawford [9] was granted a patent for a method of laying in yarns
from various directions. The different yarn geometries formed by this
process are shown in Figure 2-20. These geometries differ from that of the

other 3D nonwovens through the combinations of orthogonal and diagonal

yarns lay-ins.
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deuta's Nonwoven Apparatus [14]

Figure 2-18
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In 1977 King was granted a patent for a three dimensional orthogonal
rectangular and circular loom [18]. These looms and the resultant fabric
geometries are shown in Figure 2-21. The rectangular loom creates a
fabric with a distance of one yarn diameter between adjacent parallel
yarns. The circular loom creates a fabric with a distance of two yarn
diameters between adjacent yarns in one direction and a distance of one
yarn diameter between parallel yarns in the orthogonal direction. The
rectangular loom can be easily adjusted so that the x and y yarns are fed in

at an angle.

In 1978 Kallmeyer invented a three dimgnsional orthogonal nonwoven
rectangular loom {16]. The operation sequeﬁce of this loom is diagramed in
Figure 2-22. In this process a shed is created at the center row of the z
array. Then a x yarn is added. The shed is closed. Two adjacent sheds are
then opened. The first x yarn is doubled back through the adjacent shed.
An additional x yarn is inserted through the other shed. The two sheds are
closed. Then two additional adjacent sheds open. This process continues
until a x yarn is inserted through all the z rows. At this point the loom is

rotated ninety degrees and the above process is carried out with y yarns.

“Autoweave” [35] is another circular three dimensional nonwoven
machine. In this apparatus a prepreg cable is simultaneously cut and
inserted into a foam mandrel, known as a porcupine, normal to its surface.
These radial rods form helical corridors. Axial yarns are fed by a shuttle
which loops the axial yarn around the crown at each end of the mandrel

before passing through the next corridor. The circumferential yarns are
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Figure 2-22
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tensioned and fed into the radial corridors by a shuttle. This process can be

adapted for four and five directional yarn lay ins.

Of the processes mentioned above the Autoweave process is the most flexible
and rapid. These structures possess high strength and moduli in the
direction of fiber reinforcement. However these structures are not as

conformable as other structures such as the 3D braids.

Another type of three dimensional nonwoven, called Noveltex [15], is a
modification of needle punch technology. In this process a roll of a 2D
fabric is placed under needles which pierce thg fabric. The needles pierce
through one to two 2D fabric layers. More 2Dv fabric from the same roll is
then placed under the needles. In this way a thick fabric with some
orientation in the through thickness direction is formed. This orientation
hinders delamination. The resultant three dimensional fabric possesses
high compressive and shear strength. However the fabric's tensile and
flexural strength is lower than the other continuous fiber three mentioned

before.

Many of the nonwoven fabrication processes described in this section form
similar unit cells. The orthogonal nonwoven structures of the Omniweave,
King's rectangular loom, Autoweave, and Kallmeyer processes will be
henceforth referred to as XYZ nonwovens. The orthogonal nonwovens of
Fukuta and King's circular loom will be referred to as XXYZ nonwovens.
This structure is similar to a XYZ nonwoven composed of x yarns which

possess a cross-sectional area that is twice the size of the other constituent

yarns.




Wovens

Woven fabrics are formed by yarn interlacing. The weaving process
consists of three basic steps. This process is shown in Figure 2-23. The
first step is called shedding. Shedding is the separation of warp yarns (the
set of yarns in the machine direction) into top and bottom sheets. In the
next step, weft insertion, a weft yarn (set of yarns not in the machine
direction) is inserted between the two sheets. .The final step is the
compacting of the weft yarn, in which a reed forces the weft yarn tightly
into the shed of the fabric. When this process is repeated, the position of at
least some of the warp yarns forming thg two sheets is reversed. The
reversal of the warp yarns creates a sinuscgidal path for these yarns. The
actual length of the curved yarn divided by the net distance traveled, is

known as the crimp of the fabric.

The earliest evidence of the use of a loom was in Egypt at 4400 B.C. [12]. By
the 13th century the standard horizontal loom design, which is still used,
had evolved. This loom was automated in a series of steps during the 18th
century. For intricate weaves a draw loom is used. A draw loom possesses
cords attached to the warp yarns. These cords allow for more éontrol in
forming the upper and lower sheet in the shedding process. In 1805
Jacquard introduced a draw loom with an automatic shedding device [12).
Ever since this time, a loom which allows for custom tailoring of each warp

yarn motion is called a Jaquard loom.

Adaptations are made to two dimensional weaving techniques when used

for engineering applications [10]. For engineering applications a
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minimum amount of crimp is desired. The greater the amount of crimp,
the greater the magnitude of the components of the fiber position vector not
aligned with the fabric axis. This misalignment leads to diminished
strength. Crimp is minimized by using weaving techniques such as the
satin weave. In Figure 2-24 a five harness satin and a plain weave are
shown. Note the number of interlacings is smaller in the satin weave. A
lower number of interlacings in a fabric results in a smaller amount of

crimp.

Crimp also needs to be minimized since the high modulus yarns typical of
engineering applications possess a large critical bending radius. The
critical bending radius is inversely proportional to the amount of curvature
a yarn can maintain without breaking. Special high modulus weaves are
available which avoid this problem by keeping the high modulus yarns
straight and performing the actual weaving with a low modulus yarn

possessing a much smaller cross-sectional area.

There are two forms of three dimensional weaves. In the first form, a thin
fabric is woven in such a way as to obtain a three dimensional form. This
form of three dimensional weaving is shown in Figure 2-25. The second
form of three dimensional weaving results in the formation of a fabric of
substantial thickness. It is this form of weaving that is addressed in the

following paragraphs.

A weave geometry for thick fabrics is mentioned in Rheaume's 1973 patent
[34]. This geometry is shown in Figure 2-26. This figure is a schematic of

the weave's geometry normal and parallel to the warp yarn plane. The
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Weaving Three Dimensional Shapes [32]

Figure 2-25
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weaving of the warp yarns is controlled by a series of Jaquard heads. This
three dimensional geometry is created by adding a web yarn in the through
thickness direction. Although in this patent the web yarns transverse the
fabric thickness, thick weaves are also made with not all layers being
transversed. Using web yarns fabrics up to seventeen layers thick have
been woven. There is no inherent limit to the thickness of these weaves.
The current limit is a result of the machinery curr!antly available. These
fabrics are produced by companies such as Textile Technologies in Hatboro,
Pa and Woven Structures in Compton, Ca.

An apparatus for creating thick weaves was?patented by Emerson in 1973
(11]. Emerson’'s machine is a circular loom controlled by a plurality of
Jacquard heads. These heads control the placement of stuffer and locker
warp yarns (analogous ‘o the web yarns mentioned above). There is also a
filler yarn system which follows an helical path. Insertion of the filler
yarns is controlled by an inserter which moves around the mandrel. The
stuffer yarns are parallel to the mandrel axis. The locker yarns follow a
sinusoidal path around the stuffer and filler yarns. This path is in the
radial direction with respect to the mandrel axis. A fabric compactor
comprised of a perforated plate compacts the fabric after each filler yarn
insertion. Possible weave geometries resulting from this machine are
shown in Figure 2-27. The complexity of this machine leads to problems in

fabrication and as a result this process is not currently popular.
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CHAPTER THREE
SYMMETRY OF THREE DIMENSIONAL FIBER ARCHITECTURES

ntr i
Since the interior unit cells of many fabric structures from different textil.e
classes possess the same elements of symmetry, a classification system
based on these symmetry elements has been developed. This chapter will
explain the underlying principles of symmétry used to develop this model.
The symmetry present in the three dimensional fiber architectures
mentioned in chapter two will be explained. Additionally, the performance
properties of fiber architectures can be modelled by utilizing the different
elastic strain energy expressions produced by different combinations of

symmetry elements.

m in ial
The symmetry concepts employed in the description of the various textile
structures are adapted from the field of crystallography. There are three
basic type of operations used to determine symmetry. These operations are:
rotation about an axis, reflection in a plane, and rotoinversion (rotation
followed by reflection). A material is symmetric under one of the above
operations if it appears as it did initially after a symmetry operation.




o4

A restriction is placed on the allowable types of rotation operations. This
restriction is that rotation operations must be performed in such a manner
that the translational symmetry of the material is maintained.
Translational symmetry is maintained when the distance between adjacent
lattice sites remains constant. Besides a rotation of 360 degrees, this
symmetry can only be maintained with rotations of 60, 90, 120, and 180
degrees about a symmetry axis. The rotational sytpmetries corresponding
to the above rotations are hexad, tetrad, triad, and diad respectively.

For a three dimensional! object, the symmetry operations about three
mutually orthogonal axes must be coherent. ?When coherence is achieved,
a combination of a symmetry operation on one axis followed by an operation
on a second axis is equivalent to one operation about the third axis. There
are 32 combinations of symmetry elements for three dimensional figures
which satisfy this requirement. These combinations are referred to as the
32 crystallographic point groups. When these operations are performed,
the position of only one point, the point though which they pass, is

unmoved.

These point groups are usually diagrammed on stereograms. Stereograms
are two dimensional representations of a three dimensional body. Figure
3-1 diagrams a stereogram with the z axis normal to the stereograph plane
and intersecting said plane at the center of the stereogram. Figure 3-2
(adapted from [17] ) diagrams the different positions of a point is it
undergoes different symmetry operations. Figure 3-2a represents a
rotation of 360 degrees about the z axis (central point on stereogram).

Figure 3-2b to e represents a diad axis, traid axis, tetrad axis, and an hexad




wre1803131G 8 Jo sjuduodwo)) ay3 jo O eWaYdS

SIXU Z WoJ} sajnuiW pp ‘s3a1dap pg Sutod
$1X8 0M} UI3M)Rq §33.13ap gy sjuted

s1x8 £ 9an3edau uo jutod

stx8 £ aajsod uo jutod

stxe x aanedau uo jutod

stxe x dansod uo jutod

sTx8 z uo jutod

@6 O2 203

1-¢ 2In3y]




Monad

Tetrad

m B

Diad

Hexad
e

1
(eq‘.xivalenlt1 to center)

®

@

Triad

(e ]

2
(equivalgnt to m)
1

@ @

@

4 6

b] (equivalant to 3/m)
k

Symmetry Operations

Figure 3-2




axis, respectively. A reflection through a mirror plane along the x axis is
shown in figure 3.2f. A reflection through a mirror plane in the xy plane is
shown in figure 3.2g. Figure 3.2h is a rotoinversion operation consisting of
a rotation of 360 degrees followed by inversion through the center of the
sphere of projection. The effect of the other rotoinversion operations is

shown in Figures 3-2i, j, and k.

Figure 3-3 (adapted from [17] ) diagrams the 32 possible point groups.
These point groups are classified by the shape of the unit cell in which they
occur. Each unit cell class is ordered in terms of increasing symmetry.
The state of highest symmetry for a cer_’tain class is known as the
holosymmetric state. The different criteria for classifying these unit cells
and the shape of these unit cells is given in Table 3-1. The lattice
parameters a, b, and c¢ correspond to the length of the unit cell in the x, y,
and z directions, respectively. The directional cosines are denoted by angles

o, B, and ¥.

m lements in 3D Fiber hi r
The symmetry considerations described above were devised for materials
with symmetric atomic structure. The textile structures described here
consist of continuous lengths of yarn oriented in various directions with
respect to one another. When the these yarns intersect, they offset each
other in space. This offset will be ignored when describing the symmetry
elements present in the 3D fiber architectures. The area of the yarn's
intersection is reduced to a point when performing symmetry operations.

A schematic of a yarn intersection before and after the above simplification
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System
Triclinic
Monclinic
Orthorhombic
Trigonal
Tetragonal
Hexagonal
Cubic

Symmet

No axes of symmetry
One Diad

Three Orthogonal Perpendicular Diads
One Triad

One Tetrad

One Hexad

Four Triads

-

Conventional Cell
axbwe: axfey
axzbec: a=p=90°
azbrc: a=f=y=90°
a=b=c a=Bf=y<120°
a=bwc: a=R=y=90°
a=bwc: @=$=90°,7=120°
a=b=c: a=f=y=90°

Crystallographic Unit Cells (adapted from {17] )

Table 3-1
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is shown in Figure 3-4. Other assumptions concerning the geometry of the
yarns that have been made are: the yarns possess a circular cross-sectional
area, and in the limit of the lattice parameter scale the yarns are linear.
There are additional simplifying assumptions that must be made to
generate rectilinear unit cells for fabrics formed on circular looms. Since
the lattice parameter of each unit cell is on the order of the distance between
two parallel yarns, the circumferential yarns were approximated to be
linear. As the distance between interlacings increases, the curvature of the
circumferential yarns increases and this approximation cannot be used.
Another assumption is that the difference in distance between z yarns in

the adjacent concentric rings is insignﬂicant.

Utilizing the above assumptions, numerous textile structures possess
holosymmetric cubic symmetry. This symmetry state is found in certain
three dimensional braids, nonwovens, and knits. An Euclidean braid with
100% braiding yarns and the fourfold body diagonal lay-in architecture of
the Omniweave with a yarn orientation angle of 45 degrees with respect to
three orthogonal axes, possesses this symmetry. This symmetry is also
possessed by the XYZ geometries of Omniweave, King's nonwoven,
Kallmeyer's nonwoven, the thick weave with a web angle of 0°, and
Autoweave when all the constituent yarns possess similar circular cross-

sectional areas and are therefore equidistant.

There are a number of symmetry elements in the holosymmetric cubic
state. The simplified unit cell of these two geometry types and their point
group symmetry is shown in Figure 3-5. The position of some of these
symmetry elements is projected onto the cubic unit cell in Figure 3-6.
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The addition of two orthogonal lateral lay-in yarns in the xy plane to the
unit cell of an Euclidean braid comprised of 100% braiding yarns 100%
reduces the x and y tetrad axis of symmetry to a diad axis, and also destroys
all triad axis of symmetry. This unit cell possesses holosymmetric
tetrahedral symmetry. This symmetry state also occurs with a two-step
braid possessing equal a and b lattice parameters, with the body diagonal
geometries possessing a braid angle not equal to 45° in one of the orthogonal
planes, and with the XXYYZ Aerospatiale geometry. The 4/mmm
symmetry corresponding to this state and the unit cell of these geometries

is shown in Figure 3-7.

Another common symmetry type is mmm, which is the holosymmetric
symmetry state of an orthorhombic unit cell. This symmetry state is
possessed by: Crawford's nonwovens, Euclidean braids with one lateral or
longitudinal lay-in, body diagonal geometries with the braid angle not equal
to 45%in all orthogonal planes, a Two-Step braid with unequal lattice
parameters, and the XXYZ fiber architectures of Aerospatiale, King, and
Fukuta. Crawford's nonwovens possess this symmetry state since the
combination of three orthogonal and either four or eight diagonal yarns
reduces all symmetry axes to diads. The XXYZ fiber architectures are
mmm since the presence of two x yarns for every unit cell destroys all
tetrad and triad axes of symmetry. The highest axis of symmetry for the
holosymmetric orthorhombic geometry is diad. The unit cells of fiber
architectures possessing this symmetry and the projection of the mmm

point group onto an orthorhombic cell is shown in Figure 3-8
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The remaining textile structures do not possess three dimensional
symmetry. Although there is through thickness fiber integration, the unit
cell shape of these structures is similar to that of a laminate. Like
laminates, these structures possess symmetry in the xy plane, not in the

through thickness planes.

h m he Elastic Stiffn rix
The elastic stiffness matrix describes the relationship between strain and
stress in a material at a specific point. The theory of elasticity governs the
creation of the stiffness matrix. The assumptions made in the theory of
elasticity are: the body is a continuous medium, strains experienced by said
body are small, the stress/strain relationship is linear, initial stresses are

ignored, and deformation is reversible.

Strain is a measure of the deformation experienced by a body. The strain
state of a point can be expressed as a second order tensor. The components

of this tensor are shown below.

Exx Exy Exz

Ky
L =14
]

Eyx Eyy Eyz (3-1)
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CHAPTER FOUR
GEOMETRIC MODELLING OF 3D FIBER ARCHITECTURES

ntr i

In this chapter the unit cell geometries of various 3D fiber architectures are
modelled. In all the models the yarns are assumed to be incompressible
and to possess a circular cross-sectional ’grea. Except where noted, all
yarns comprising the fiber architectures are identical. The effect of
varying geometric parameters on the fiber volume fraction is studied. Also
the percent fiber volume fraction in different fiber orientations is stated.
The effective volume of fiber oriented towards an arbitrary angle is given for

each fiber architecture.

The MWK possesses an orthogonal unit cell. The a and b parameters of a
MWK unit cell are shown in Figure 4-1. In this figure, the dashed box
contains the ab plane of one unit cell. The length of the a parameter is
equivalent to the distance between the centers of two adjacent orthogonal
yarns in the x direction. The length of the b parameter is equivalent to the
distance between the centers of two adjacent orthogonal yarns in the y

direction.
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The Unit Cell of a Multiaxial Warp

Figure 4-1




The circles in each unit cell in Figure 4.1 represent the intersection of the
knitting yarns with the ab plane. The knitting yarn is assumed to have a
cross-sectional area one tenth the size of the lay-in yarns. The shape of
each knitted loop completed by the knitting yarn is modelled as an ellipse.
Figure 4.2 shows the relationship of the geometric parameters of the
knitting yarn ellipse to the MWK unit cell. As shown in Figure 4.1, there
are four spots in each unit cell where a knitting yarns intersects with the ab
plane. The three dimensional shape represented by each circle in the unit
cell is one-half of an ellipse. Thus there are two knitting yarn ellipses in
each unit cell. The length of knitting yarn in the unit cell is equal to the
circumference of two ellipses. The circumfereice of an ellipse is equal to:

2
C - 4aeJ 1- e25in20d0 = 2ma( 1 0.25¢2 - 047ed)

VaZ-bZ

with € = 2

(4-1)
Each MWK cell consists of yarn lay-ins in the x, y, and +/- 8 directions.
The ¢ parameter of the MWK unit cell is equivalent to 4D + K. D is defined
as the diameter of the lay-in yarns and K is defined as the diameter of the
knitting yarn. This distance results from the four lay-ins, and the one-half
diameter of the knitting yarn on the top and bottom of the unit cell.

The length of the a parameter of the MWK unit cell is D + S, where S is the
distance between yarns of like orientations. The length of b depends on the
angle of the bias yarns. If 0 is 459, b = a. When 0 is not 459, b = (D +S)tan®.




. = (4D + K)/2

b,= (D/cos8 + K¥2

The Elliptical Path of a Knitting Yarn in a Multiaxial Warp Knit

Figure 4-2
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The two angled lay-ins each possess a length of Lgq = a/cos® = (D + S)/cos9.

The fiber volume fraction of yarn in the unit cell is equal to:

nD2 K2
(a+b+ 2La)T+ 2C 7£4—
Vg = abe 4-2)

nKe | .
where < is the cross-sectional area of a yarn

with diameter K

The fiber volume fraction of yarn in the unit cell is the volume of yarn in the
unit cell divided by the unit cell volume. The volume of a MWK unit cell is

the product of the three unit cell parameters. ~

The effect of varying the angle of the angled lay-ins on the fiber volume
fraction is plotted in Figure 4-3. In this plot, the space between adjacent
yarns in the x direction is assumed to be one yarn diameter and the
diameter of the knitting yarn is assumed to be one-tenth that of the lay-in
yarns. The fiber volume fraction increases rapidly after 45°. This increase
is a result of the a parameter being greater than the b parameter. In this
region of the curve the space between yarns in the b direction is decreasing.

Varying the angle of the bias yarn changes the fiber volume significantly.

Figure 4-4 plots the effect of varying the distance between the yams in the
closest-packed direction. The dependence of fiber volume fraction on the
distance between closest-packed yarns is harmonic. The fiber volume
fraction between two integral S values approximately decreases by (1/(Syg+1)

with Sy being the higher S value. The biggest reduction in fiber volume




Fiber Volume Fraction

_ - |

38 35 58 435 3¢

Bias Yarn Orientation

Dependence of the Fiber Volume Fraction of a Multiaxial Warp Knit
on Bias Yarn Oriention

Figure 4-3




.9
| 5
3]

| £

e 4
Q
|
. S

4 s .3
<
[

.C

ga ) S b 1 ) S U
3 3 /7 S !
i Length (in units of D)

Dependence of the Fiber Volume Fraction of a Multiaxial Warp Knit
on the Distance Between Adajcent Parallel Yarns
Figure 44

o



fraction, 50%, occurs in the region of zero to one yarn diameter of space

between the closest-packed yarns.

The effect of assuming a different relative diameter of the knitting yarn to
that of the lay-in yarns for a MWK with 8 = 459 is shown in Figure 4-5.
Varying K by an order of magnitude of ten changes the fiber volume
fraction by 11%.

hogonal Fiber Archi r

XYZ m

In this section the XYZ, XXYYZ and the XXYZ orthogonal geometries will
be discussed. The XYZ geometry possesses a cubic unit cell. The geometry
of each <100> plane in this cell is shown in Figure 4-6. As shown in this
figure, the unit cell parameters are equal to 2D, where D is the diameter of
the constituent yarns. The fiber volume fraction of the XYZ geometry
equals:

3(2DXnD?/4
Vg = -(——3(‘53——2 = 059 (4-3)

XXYZ Geometry

The second type of orthogonal yarn geometry, XXYZ, possesses a
tetrahedral unit cell. The (100) plane of an unit cell with this fiber
architecture is shown in Figure 4-7. This cell differs from the unit cell of
the other orthogonal geometry by the presence of two x direction yarns in

each cell. This presence causes the lattice parameter a to equal 3D. Since
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the other lattice paramet:rs are not effected by the second x yarn, they
remain 2D. The fiber volume fraction for this cell is the same as with the

XYZ geometry. The expression for this value is:

3

7D
(443+2) =

Vg = T = 0.59 (4-4)

XXYYZ Geometry

The final type of orthogonal yarn geometry is XXYYZ. This geometry is
similar to the XYZ geometry depicted in Figyure 4-6 except here the full
diameter of the x and y yarns is included in each unit cell edge. Thusa =b

= 3D while z remains 2D and there are two x and y yarns per unit cell.

3

D
(64+6+2) =

Body Diagonal Geometries
In this section the similar unit cells of 3D braids with 100% braiding yarns,
and the 4 directional lay-in Omniweave are discussed. These unit cells are,
in general, orthogonal. For the 3D braid an important consideration in
determining the unit cell parameters is the process by which the braid is
formed. In Figure 4-8 the unit cell of a 3D braid wit'. a 45° braid angle is
shown along with the track and column movements necessary to form this

unit cell. The compacting action drastically alters this unit cell. This
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action compacts the bottom body diagonal pair against the top body diagonal
pair, pulls the eight corner loops out of this unit cell into adjacent unit
cells, and both inverses as well as reduces the amount of curvature present
in the constituent yarns. The resultant unit cell is shown in Figure 4-9.
The offset of the two body diagonal pairs in the xy plane is the result of
subsequent track and column motions. The unit cells of the Omniweave
are determined by the direction of the lay-ins. The simplified unit cells
shown in Figure 4-10 will be used to describe the body diagonal geometries.

The total length of yarn in each unit cell is four times the length of the body
diagonal in that cell. In this model we will also assume that the unit cell is
tetragonal. This is the case when the braiding motion is an one by one
track and column movement and the constituent yarns possess a circular
cross-sectional area. For the tetragonal unit cell a is equal to b but is not

equal to c. ¢ can be described as
c=a tanf (4-6)

0 is the angle of the side face diagonal. which is equal to the compliment of

the braid angle.

The length of a body diagonal in this unit cell is:

LB =V 2a2 + a2tan6 (4-7)
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Euclidean Braid Unit Cell After Compacting
Depicting the Effect of Subsequent Column Movement
on the Relative Position of the Two Body Diagonal Pairs
Figure 4-9
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Simplified Euclidean Braid Unit Cell

Figure 4-10
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The fiber volume fraction is equal to:

_ ‘\j 2+tan20 D2

Vi=
£ a2 tan®

(4-8)

Since there is no close packed direction in this unit cell, there is no absolute
relationship between the constituent yarn diameter and the lattice
parameters. Figure 4-11 plots the effect of varying a in units of D on the
fiber volume fraction with a braid angle of 30°. The form of this function is
Vi(a) = T/a2, where T is a constant. As the braid angle is increased, T

increases and subsequently Vga) increases far a specific a value.

Figure 4-12 plots the effect of varying the braid angle on the fiber volume
fraction with the parameter a equal to 3D. The fiber volume fraction
steadily increases as the braid angle is increased. The increase in the

value of dVf/d(braid angle) above 45° results from the lattice parameter c

]

being less than a in this region. From this plot, it is apparent that there is a
minimum fiber volume fraction. This value depends on the value of a
assumed. The minimum fiber volume fraction decreases as the value of a

Increases.

Combined geometries are possessed by unit cells with both or:hogonal and
bias direction constituent yarns. These geometries are possessed by

Euclidean braids with longitudinal or lateral lay-ins, Two-Step braids, and
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Crawford's nonwovens. In the case of the Euclidean braid with lateral lay-
ins, the presence of lateral lay-ins alters the fiber volume fraction equation

4-8 in the manner shown below.

_ (4\] 2+tan2 +n)rxD2

4a2 tanf

Ve (4-9)

In this equation, n represents the number of lateral lay-ins. A lateral lay-
in in either ti:e x or y directions possesses length a (assuming a tetrahedral
unit cell). The presence of the lateral lay-ins increases the T value of Vi(a)
for a specific a, as compared to a braid with 109% braiding yarns. The fiber
volun.e fraction as a function of the braid angle for 100% braiding yarns,
one lateral lay-in, and two lateral lay-ins is plotted in Figure 4-13. The
effect of the lay-ins on the fiber volume fraction increases as the braid angle
increases. This occurrence is attributed to the decrease in the relative

length of ¢/a as the braid angle increases.

li n . . nei . L

The addition of longitudinal yarns alters equation 4-8 to:

_ (4\] 2+tan20 +tan0)rD?2

Vv
f 4a2 tan0

(4-10)

The additional atan® term accounts for, ¢, the length of the longitudinal
yarn in the unit cell (the a is factored out in 4-8). The presence of the

lateral lay-ins creates a T value of Vi(a), for a specific a, larger than that of
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a braid with one lateral lay-in, but smaller than with two lateral lay-ins.
The fiber volume fraction as a function of the braid angle for 100% braiding
yarns and for a braid with longitudinal lay-ins is plotted in Figure 4-14.
The effect of the lay-ins on the fiber volume fraction decreases as the braid
angle increases. This occurs since the relative length of ¢/a decrezces as

the braid angle increases.

Two-Step Braid ‘
While the two step braiding process possesses a similar geometry to the
Euclidean® braid with longitudinal lay-ins, they are not identical. @ The
difference in these two unit cells arises from the two different loom designs.
The different loom designs are shown in Figure 4-15. The ratio of
longitudinal yarns to braiding yarns is different in both processes. For the
two step braid the ratio must be:

L
B=R+c>1 1D

where L is the number of longitudinal yarns, B is the number of braiding
yarns, R is the number of rows, C is the number of columns. In the 3D
braid the numkher of longitudinal yarns can vary from zero upto the number

of braiding yarns.

L
ES 1 (4-12)

The projection of the component yarns on the (001) pianes for the 3D braid
with longitudinal lay-ins and the two step braid are shown in Figure 4-16.
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Two-Step Braid.

Euclidean Braid with a
Longitudinal Lay-in

Projection of the Component Yarns
on the (001) Plane

Figure 4-16




The labels T and B on the two-step braid figure represent the top and bottom

plane of a unit cell. The length of each bias yarn is:

Lg = ‘\FZ (a—%}2 +c2= '\] 2 (a-%).‘l + a2 tan20 (413,

Where 0 is the angle relating a and c. The expression for the fiber volume

fraction for this geometry is: -

4\[ 2 (a%i)2 + a2 tan20 + 2atand xD2
= 4a3 tan6

Ve (4-14)

The fiber volume fraction as a function of braid angle is plotted for the Two-
Step braid and the Euclidean braid with a longitudinal lay-in in Figure 4-17.
The Two-Step braid possesses a higher minimum fiber volume fraction
since there is a higher precentage of longitudinal yarns in this fiber

architecture. Since a higher percentage of the fiber volume fraction in the

Two-Step braid arises from the longitudinal yarns it is less dependent on 8.

Crawford's Nonwgvens

Crawford's 7D and 11D nonwovens are combinations of orthogonal and
diagonal yarn geometries. These geometries behave in a similar manner to
the above mentioned combined geometries. Figure 4-18 plots the fiber
volume fraction as a function of the bias yarn orientation for Euclidean
braids with longitudinal and lateral inserts as well as the 7D body diagonal
geometries. The fiber volume fraction function for the 7D body diagonal

gcometry can be expressed as:
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(4\] 2+tan20 + 2 + tan@)nD2
Vi= (4-15)
4a2 tanf
In this relationship, it is assumed that a = b.
For the face diagonal 7D geometry the length of each face diagonal equals:
Lrp=vaZ+ &2 (4-16)

Using this relationship, the fiber volume fraction for the face diagonal 7D

geometry is expressed as:

_ (4\] 1+tan20 + 2 + tanO)rD2

422 tan®

Vr (4-17

The fiber volume fraction for the 11D geometry can be determined in a

similar fashion.

_ (4\/ 2+tan20 +4\/ 1+tan20 + 2 + tan@) nD2
B 4a2 tan@

Vg (4-18)

Figure 4-19 plots the fiber volume fraction as a function of the face diagonal
angle with the lattice parameter a equal to 4D for the three Crawford
geometries. The minimum fiber volume fraction of the 11D geometry is
very high. The assumption that all the constituent yarns intersect at the
center of the unit cell is partially responsible for this value. There doesn't
appear to be much difference between the behavior of the 7BD and the 7FD
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geometries as a function of orientation angle. The 11D geometry is
translated vertically from these curves but appears to possess the same rate

of volume fraction increase.

hree Dimensional Weav

The possibilities of unit cell geometries with three dimensional weaves is
numerous. For this model, weaves with a plain weave geometry in the xy
plane are studied. The effect of crimp on the fiber volume fraction is
assumed to be small enough that the plain weave can be modeled as a x/y

lay-in geometry. -

Figure 4-20 is a schematic of the xz plane of a three dimensional weave.
The through thickness warp yarn is known as the web yarn. The surface
yamns form a traditional plain weave on the surface of the fabric. Since the
presence of the surface yarn is optional and does not effect the geometry of
the interior unit cellg, it will be ignored in this model. The geometry of
these weaves is described by a series of unit cells. These unit cells vary by
the number of web yarns in them and the orientation of these yarns. The
number of web yarns can vary from zero to two in each unit cell. The two

possible orientations of the web yarns is shown in Figure 4-21.

A final assumption that is made is that the lattice parameters of all unit
cells are the same. This assumption is sound when there are many cells
with web yarns, since these cells then tend to support the cells without web
yarns. The lattice parameters in the xz plane, a and ¢, are equal to the

sum of one fill yarn diameter plus a bias yarn diameter. The bias yarn
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a=( 1+ Usina ) D

c=( 1+1/cosa)D

XZ Plane of Two 3D Weave Unit Cells Depicting Possible
Web Yarn Orientations and the Unit Cell Lattice Parameters

Figure 4-21
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diameter depends on the web angle. The relationship of this angle to the

lattice parameter is shown in Figure 4-21. Thus a and c are equal to:

a=(l+——)D (4-19)
sing

c=(1+——)D (4-20)
COoSQL

Where a is defined as the web angle. Since the presence of the web yarn has
no effect on the b dimension, b = 2D, as in a XYZ geometry. When a = 0°, the
thick weave geometry is XYZ orthogonal witha =b = ¢ =2D and V¢= 0.59.

-
-

The fiber volume fraction of a unit cell with no web yarn 1s:

1

(4+co +s' 01)7t

so¢  sin

Vf = 1 1 (4-21)
8l+—)(1 + )

simno [o{01:104

The assumption is made that the web yarn enters the cell at a/2 and exits at

/2. The length of a web yarn in a unit cell is equal to:

Lu = (32 +(§? (4-22)

Correspondingly the fiber volume fraction of a unit cell with one or two web

yarns 1s:
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1
4+ " a+s'nor. +nLy)
i
Vf = cos 1 1 (4‘23)
81l+—)(1+ )
sina cosa

where n is defined as the number of web yarns per unit cell.

Figure 4-22 plots the fiber volume fraction as a function of a for a unit cell
with one, two or no web yarns. There is a maximﬁin fiber volume fraction
at 45° for all unit cells. The sharp drop in Vfin the limit of 90° is attributed
to cosa going to 0 in this region. Figure 4-23 plots the effect of varying the
relative proportion of cells with and without wet{yams when a equals 45° by

using the following function:
V{P) =P Vi(n=0) + (1-P) Vf(n=2) (4-24)

n is the number of web yarns per unit cell

Geometric Isotropy
A fiber architecture is considered to possess geometric isotropy if the
variation in effective fiber volume fraction directly contributing to a loading
direction is constant for any arbitrary angle. The effective fiber volume
fraction of a fabric is defined as the fraction of fibers aligned in the proper
direction in order for the applied load to be transferred to the fibers. For
this model of geometric isotropy, the load bearing capacity of a fiber in the
transverse direction is assumed to be zero. This capacity is assumed to be

one in the longitudinal direction. These assumptions can be applied since

N\
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the load bearing capacity of a yarn in the transverse direction is many

orders of magnitude lower than that in the longitudinal direction.

The geometric isotropy of the various fiber architectures is described by
plotting the effective fiber volume fraction at any arbitrary angle in the xy,
xz, and yz planes. The angle v is defined as the projection of the arbitrary
angle onto the plane being analyzed. ¢ is deﬁngd as the angle a yarn
orientation makes with the axis normal to the plane in question. 0 is the

angle the projection of a yarn orientation makes with a given plane.

The geometric isotropy in the three orthc;gonal planes is plotted as a
function of the arbitrary angle in the three orthogonal planes. In each plot
of the geometric isotropy in an ij plane, i corresponds to the horizontal axis
and j represents the vertical axis. For a totally isotropic material, the
geometric isotropy plots would possess a circular shape. The greater the
eccentricity of the plot, the higher the degree of anisotropy present.
Geometric isotropy plots are made of the different fabric geometries

described in this chapter.

Multiaxial Warp Knits

Since the contribution of the knitting yarn to the total fiber volume fraction
is typically 1%, the presence of the knitting yarm is ignored when
calculating the geometric isotropy. There are four yarn orientation
directions of the lay-in yarns comprising a MWK. These directions and the
fractional contribution they make to the total fiber volume fraction is

expressed as:
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cosf
since Vx =Vy ,V.g = V.¢ and V,g=—2
cosH
For an arbitrary angle, v, the percent volume fraction in the xy plane is:
. cos(8-Y) cos(0+Y)
V(y) = Vo (lcosy I+ Isiny 1+ | LT Yy (42
cosB cos6

Each term of 4-25 represents Vy, Vy , V g, and V.¢ respectively. In Figure 4-
24 the geometric isotropy in the xy plane is plotted for theta is equal to 45
and 30 degrees. There is a local minimum orthogonal to every principal
yarn orientation direction in the plane. This minima is greater for the + 45°
direction than for the +30° direction. In the +45° case the bias yarns are
orthogonal to each other and do not supply any effective load carrying
capacity to each other.
[
The geometric isotropy in the xz and the yz planes is similar. The effective

fiber volume fraction as a function of ¢ in these planes is described by:
V(¢) = V() lcosol 4-27)
The geometric isotropy of these planes is shown in Figure 4-25. The effect of

the knitting yarn on the geometric isotropy in the xz and the yz planes was

determined for a fiber volume fraction of 1% knitting yarn. This presence




The Geometric Isotropy of a MWK in the xy Plane
Figure 4-24
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The Geometric Isotropy of a MWK in the xz or the yz plane
Figure 4-25
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had a small effect on the geometric isotropy in the regions of y = -45° to 459,

and 135° to 225°. In the other regions there was no significant effect.

XYZ m
The distribution of the constituent yarn orientation of the XYZ orthogonal
geometry is similar for all three yarn directions. This distribution is given

below: .

The geometric isotropy of the type one orthogonal geometry is similar for all

three orthogonal planes. This relationship can be expressed as:
V(y) = Vi (lcosy 1+ isinyl) (4-29)

The geometric isotropy of XYZ architecture is plotted in Figure 4-26. Local
minima occur when constituent yarns are orthogonal to each other. In the

XYZ geometry yarns are orthogonal to each other on the principal axes.

XXYZ Geometry

Because of the relative orthogonality of the constituent yarns in a XXYZ and
a XXYYZ geometry, the geometric isotropic curves for these geometries
possesses the same orientation angle for local minima as the XYZ
geometry. The percent fiber volume fraction of each unique yarn orientation

is dissimilar for these geometries. The geometric isotropy curves differ by
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The Geometric Isotropy of the XYZ Fiber Architecture for all Planes
Figure 2-26




the magnitude of the effective fiber volume fraction in each plane

volume fraction distribution of the XXYZ geometry is:

Vf=Vx+Vy+vZ =4Vn+3vn+2Vn=9Vn

The geometric isotropy of the xy plane can be expressed as:

V() =V, (4lcosy 1+ 31sinyl)

The geometric isotropy of the xz plane can be expressed as:

-

V(y) = Vp (4lcosy |+ 21sinyl)

The geometric isotropy of the yz plane can be expressed as:

V() =V, (lcosy |+ 2lsinyl)

XXYYZ Geometry

111

. The fiber

(4-30)

4-31)

(4-32)

(4-33)

The geometric isotropy of these three planes is plotted in Figure 4-27. The

geometric isotropy of the XXYYZ geometry is described in

a similar

manner. The fiber volume fraction distribution of the XXYYZ geometry is:

Vf=v!+Vy+Vz =3Vn+3Vn+2Vn=8Vn

(4-34)



xz Plane

yz Plane

The Geometric Isotropy of a XXYZ Fiber Architecture
Figure 4-27
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The geometric isotropy of the xy plane can be expressed as:
V(y) = V, (3lcosy |+ 21sinyl) (4-35)
The geometric isotropy of the xz and the yz planes can be expressed as:

V(¥) = Vo (Blcosy | + 21sinyl) (4-36)

B iagon

The fiber volume fraction distribution of a bc;_dy diagonal fabric geometry is
equally divided by the four yarn orientations of this geometry. When this
geometry is present in an cubic unit cell, the geometric isotropy is
equivalent in all orthogonal planes. The geometric isotropy can be

expressed as:
V() = 0.5 1sin(54.74)1 (1 cos(45-y)l +! cos(45+7)1) (4-37)

By the symmetry of the fiber architecture, the angle made with the axis
normal to the plane, 35.269 is the same for all yarn orientations. The
projection of the four yarn orientations reduces to two individual
orientations in a specific plane. The two cosine terms reflect these

orientations.

The geometric isotropy of the body diagonal geometry with a tetrahedral
unit cell in the xy plane is described by the general form of the above

equation, which is given below.
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V(Y) = 0.5 Isind! (I cos(6-y)I +1 cos(6+y)!) (4-38)
V2
= -1 (—— 4.
¢ = tan"1 ( ne) (4-39)

The isotropy of the xz and yz planes differs from that of the xy plane
through possession of a different value for 8. The geometric isotropy for the
body diagonal geometry with a angle of 45° in the xy plane and 60° in the xz
and yz planes is shown in Figure 4-28. There is a significant increase in
the anisotropy with an angle of 60°, since ¢ is then significantly greater

than a. When 6 = 60° local minima occur at .730, 150, 210, and 330 degrees.

These angles are orthogonal to the two yarn orientations in the plane.

Euclid Braid with Lateral Lay-i
The presence of lateral lay-ins only effects the xy plane isotropy of an
Euclidean braid. The geometric isotropy of this braid with two orthogonal

lateral lay-ins can be expressed as:

V(y):yz-B- Isingl (I cos(8—y)! +1 cos(6+y)1)

+&2‘§& (Icosy I+ Isinyl) (4-40)

where Vg = VB + VLat

The exact value of VB can be determined with the following equation:




xy Plane with ¢ = 45°

xz = yz Plane
8 =600

The Geometric Isotropy of the Body Diagonal Geometry
Figure 4-28
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2

\j 2+tan20 + 2

Vg=1- (441)

Figure 4-29 plots this geometric isotropy. The presence of the lateral yarns
decreases the curvature of the plot in each segment and creates an

inflection point on the axes.

Euclidean Braid with itudi -1
The presence of longitudinal lay-ins effects the xz and yz plane isotropy for
an Euclidean braid. The geometric isotropy of this fabric can be expressed

as:

V() =l25' Isingl (1 cos(8=y)| +I cos(@+y)!)

+Viong ! sinyl (442)

where Vf = VB + Vigng

The exact value of Vg can be determined with the following equation:

tand

(4-43)
\j 2+tan20 + tan®

VB=1-

Figure 4-30 plots this geometric isotropy for a theta of 60° in the xz plane.
The presence of the longitudinal lay-in in the z direction creates additional

local minima on the x axis.




The Geometric Isotropy of the Enclidean Braid with Two Lateral
Lay-ins in the xy Plane with 9 = 45°
Figure 4-29
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The Geometric Isotropy of the Euclidean Braid with a Longitudinal
Lay-in in the xz Plane with 6 = 60
Figure 4-30
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Two- Brai

The relative value of this minima is greater in the two step braid as a result
of the larger proportion of longitudinal lay-ins. The geometric isotropy of
the xz plane of the two-step braid is shown in Figure 4-31. The isotropy in
this plane is similar to that in the yz. The geometric isotropy is modelled

using:

V() = V%ias Ising! (1 cos(0-y)! +1 cos(éﬂ)! )
atan0 -
¢ =tan1( _\/:D—L - (4-45)
2@a-3P
V¢ = VBjas + VLong (4-46)
2atanf
VBias = 1- (4-47)

2atan® +\/ 2 (a- '15?')2 + a2 tan20

8 is defined as the braid angle, a is a lattice parameter, and D is the yarn

diameter used to calculate the geometry of this cell in 4-13.

The xy plane geometric isotropy of the two-step braid is shown in Figure 4-
32. This plot is generated with the following function, when a tetrahedral

unit cell is assumed:
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The Geometric Isotropy of the xz Plane of the Two-Step Braid
with 0 = 60°
Figure 4-31




The Geometric Isotropy of the xy Plane of a Two-Step
Braid
Figure 4-32




Vg

V(iy = 2ias Isind! (I cos(6-y)! +1| cos(6+y)1) (448)
‘\lz(a-g
— A&
where ¢ = tan-1( ~—tand )

Since the a and b lattice parameters are equal in this plane, theta equals 45

degrees. This function possesses the same form as equation 4-33, for the

geometric isotropy of the Euclidean braid with 100% braiding yarns in the’

xy plane.

Crawford's 7D Body Diagonal Geometry

Crawford's 7D body-diagonal geometry, plotted in figure 4-33, possesses a
similar geometric isotropy to the braid with lateral lay-ins in the xy plane
and to the braid with longitudinal lay-ins in the xz and the yz planes. The
geometric isotropy of this fiber architecture can be generated by utilizing
equations 4-40 and 4-42 for the respective planes. The determination of the
fiber volume fraction coefficient is made using the following relations.

-

V¢ =VB + Viong + VLat (4-49)

2
Viat = (4-50)
4\] 2+tan20 + 2 + tan®

v atan® @51
Long =
4\j 2+tan20 + 2 + tan®




xz = yz Plane
with 6 = 60

The Geometric Isotropy of Crawford's 7D Body Diagonal Geometry
Figure 4-33




VB=1-VLong- VLat (4-52)

rawford's 7D Face Diagonal m
The geometric isotropy of Crawford's 7D face diagonal geometry in the xy
plane when the lattice parameter a = b, possesses no local minima at 45°.
This phenomena occurs since the projection of the f;ce diagonal yarns into
the orthogonal planes is parallel either to one of the orthogonal axes. The

function used to plot the geometric isotropy in the xy plane is:

-
-

V() = Vx lcosyl + Vylsiny I+ ngcdée( Isiny |+ lcosyl )(4-53)

Ve =Vy +Vy +V,+Vp (4-54)
Vy =V, = 1 (4-55)
x=Vy = -

2+tan6+\j1+tan29
v, tan®

= (4-56)
2 + tan0 + ‘\l 1+tan29

Vr=1-Vy -V,-V, (4-57)
"

Corresponding the geometric isotropy of the xz plane is:

) \4
V(y) = Vx lcosyl + V !Isiny |+ "f:( lcos(8+y) |+ lcos(6-7)1)

(4-58)




The geometric isotropy of the yz plane is:

V(y) = Vy lcosyl + Vzlsiny I+-‘%:( cos(8+y) |+ lcos(6-7)1)

(4-59)

The geometric isotropy of the xz and the yz planes are equivalent if a = b.
The factor that is divided into VF differs from that of the xy plane since only
one-half of-the face diagonals are projected into either the xz or the yz
planes. The different isotropy plots for this fiber architecture are shown in
Figure. 4-34

Crawford's 11D Geometry

The xy plane isotropy of Crawford's 11D geometry possesses many local
minima as a result presence of the body diagonal, face diagonal, and
orthogonal yarns. Figure 4-35 plots the isotropy of this geometry for the xy
and xz planes. Since a tetrahedral unit cell is assumed, the xz and the vz
planes are equivalent. The function used to produce the xy geometric

isotropy plot is:

V(y) = Vy lcosyl + Vylsiny |+22£-c059( Isiny |+ lcosyl)

+—2B Ising! (I cos(8-y)| +1 cos(8+y)!) (4-60)
) V2
= tan-1 (42—
with ¢ =tan1( ne)

In the xz and the yz planes (the 12 planes):

v
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\
xy Plane j
with 6 = 45°

xz = yz Plane
with @ = 60°

The Geometric Isotropy of Crawford's 7D Face Diagonal Geometry
Figure 4-34




xz = yz Plane
with 0= 6¢°

xy Plane

with 8 = 45°

The Geometric Isotropy of Crawford's 11D Geometry
Figure 4-35




128

\% .
V(y) =Vilcosyl + Valsiny |+ (\—/424——2Ii Isingl) (I cos(0-y)| +

| cos(0+y) 1) (4-61)
tan®
. - _1 —
with ¢ =tan-1( Np)
The principal fiber orientation directions comprise the fiber volume fraction
in the following manner: -

—

Ve =Vy +Vy+ V4 Vp+Vp (4-62)

1 -

Ve=Vy= -
= 2+tan9+‘\j1+tan26+\f2+tan26

"(4-63)

tan®
2 + tan0 + \H+tan2e + \/ 2+tan28

B \j 1+tan20
2 + tand + \ 1+tan?q + \ 2+tan20

Vz

(4-64)

VF

(4-65)

VB=1-Vg -Vy-V;-Vfp (4-66)

3D Weaves

The presence of the web yarns in the three dimensional weave geometry
has the same effect on the geometric isotropy as the face diagonal yarns of
the combined geometries. Each plane in this fiber architecture possesses a

different geometric isotropy. The functions to generate these different
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isotropies for a thick weave with two web yarns per unit cell are given

below.
In the xy plane:

V() =Vl cosyl + Vyl sinyl + V! cosé cosyl
In the xz plane:

A%
V() =Vyx | cosy | + -2i( | coste+)| + 1 cos(ax—17)l

L]

In the yz plane:

V(y) =Vy | cosyl

where:

¢ =tanl (3)

a is defined in equation 4-18 and c is defined in 4-19.

Ve=Vy +Vy+ 'V,

1+— 1
V, = . sina
2+—+ + 2Ly
sinot  cosa
Vw = - 2LW1
2+ + + 2Ly,

sin cosa

(4-67)

(4-68)

(4-69)

(4-70)

4-71)

(4-72)

(4-73)
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VY =1- Vx - Vw (4‘74)

Figure 4-36 plots the geometric isotropy of these three planes. The yz plane
possess an isotropy similar to that of the MWK in this plane. The xy and
the xz planes possess minima at intervals of 459 as a result of the presence

of the web yarns.

0
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xy Plane

The Geometric Isotropy of a Three Dimensional Weave
Figure 4-36
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CHAPTER FIVE
MECHANICAL MODELLING

The 3-D fibrous composite can be regarded as an assemblage of a finite
number of individual structural cells. Each individual cell is the smallest
representative volume taken from the fiber architectural system. It is then
treated as a space structure with the endowed representative architecture,
rather than a material with a set of effective continuum properties. The
basic idea is to identify the unit cell's nodal supports, similar to the nodal
points of a conventional finite element. By the introduction of the principle
of virtual work in solid mechanics and structural analysis, the matrix [k],
the stiffness of the cell can be derived to relate nodal displacement vector to

nodal forces for a cell.

Therefore, the key step in the formulation of the problem is the
identification of the unit cell's nodal points. In this model, the yarns which
pass by a node are considered as intersected each other and hence, can be
treated as either pin-jointed two-force truss members or rigid connected
frame members. With this postulate, the interaction at the yarn

interlacing is not considered in this modelling. Thus, for instance, by
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treating a unit cell specifically as a pin-jointed space truss , a 3-D truss

finite element technique may be employed for the mechanistic analysis.

As for the matrix in a composite, it is usuaily used as load transfer
medium. In order to include the effect of matrix, which is subjected to
tension or compression under the deformation of yarns, the matrix is
assumed to act as rod members. Each rod member connects the two ends of
a given set of corresponding yarns in the unit cell. Hence, the matrix plays

a role in restricting the free rotation and deformation of yarns.

The methodology of the finite element modelling is presented in the
following. First of all, let ajj represent the value of member deformation g;
caused by a unit nodal displacement rj. The total value of each member
deformation caused by all the nodal displacements may be written in the

following matrix form:
{q} = [a] {x} (5-1)

where [a] is called the displacement transformation matrix which relates
the member deformations to the nodal displacements. In other words, it

represents the compatibility of displacements of a unit cell.

The next step is to establish the force-displacement relationship within the

unit cell. The member force-deformation relationship can be written as:




134

Q] = [K1{q} (5-2)
where [K'] is the stiffness matrix of a member

The principle of virtual work states that the work done on a system by the
external forces equals the increase in strain energy stored in the system.
Here, the nodal forces can be considered as the external forces of the unit

cell. Therefore, if (R} represents the nodal force vector, it follows that

(3r)T(R} = (3q)T{Q} (5-3)

where {8r} and {8g} are virtual displacement and deformation, respectively.
From Equations.(5-1) and (5-2), the following equations can be derived

through matrix manipulation:

R} = [Kl{r} (5-4)

where: (R} = nodal forces

(K] = [a]T[K'l[a] = stiffness matrix of the unit cell

{r} = nodal displacements
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Using Equation (5-4), the nodal force and the nodal displacements of a unit

cell are related by the stiffness matrix of the unit cell.

In the above mentioned methodology, the stiffness matrix of a unit cell was
formalized by use of the compatibility matrix [A] and the concept of
principle of virtual work. With this approach, the entire stiffness matrix
[K] was assembled by the triple matrix multiplication given as Eq.(5-4). For
truss structure or simple fiber architecture of a unit cell, the compatibility
matrix can be obtained without rigorous calculations. However, when the
fiber architecture becomes complicated or a frame unit cell is being
analyzed, it involves a large compatibility matrix where many of the
elements are not easy to ove evaluated correctly. From the computer
programming points of view, neither the generation of this matrix [A] nor
the multiplication process for [K] matrix assembly would be suitable to be
explicitly laid out. A better methodology which combines the ideal of
previously mentioned approaches and computer-oriented techniques is

presented in the following, which is known as the Direct Stiffness Method.

In this method, the end displacements of each member are treated with
respect to structural (global) coordinates. In this way all of the geometric
transformation will be handled locally, and the stiffness matrix can be
assembled by direct addition instead of by matrix multiplication. Thus, the

assembly of the joint stiffness matrix may be stated as
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n
K= EK]' (5-5)

where n is total number of the members, K; is the i-th member stiffness
matrix with end-forces and displacements in the directions of structural
coordinate. Therefore, the member stiffness matrix should firstly be
obtained with respect to the member axes, and then transformed in

reference to the structural coordinates.

The member stiffness matrix is obtained by a unit displacement method.
The unit displacements are considered to be induced one at a time while all
other end displacements are retained at zero. The unkown displacements
at each joint of a truss consists of three components, namely, the %, y and z
components of the joint translations. The unkown displacements at each
joint of a frame consists of six components, namely, the x, y and z
components of the joint translations and the x, y and z components of the

joint rotations.

The member stiffness matrices of the space truss and space frame in
member coordinates are given in Figure 5-1 and Figure 5-2, respectively.
The elements of the jth column in the matrices represent the forces
required to hold the unit displacement in the jth direction, or, each column

in the matrix represents the forces caused by one of the unit displacements.
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The present modelling will consider the high symmetry composites as
frame structures. In this sense, the axial, flexural and torsional stresses
and deformations of a member may be induced under tensile load. In other
words, the modelling takes into consideration of axial, bending and torsion
of yarns. In general case, if the member axes are not coincident with
structural axes, a rotation transformation matrix should be performed to

obtain the member stiffness in structural coordinates.

Let the spatial coordinate system of a prismatic member be given in Figure
5-3. The direction cosines rj, s; and t; relate the structure axes (Xg, Ys, Zg)
to the member axes (Xm, Ym, Zm). The coordinate transformation between

Xms Yms 2, and X, Ys, Zg may be written as

Xm r1s1t1 Xs
{le:[msztz:‘ {Ys}

Zm ) r3 S3 t3 Zs
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Figure 5-1. Stiffness Matrix of a 3-D Truss Member
in Member Coordinates.
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Figure 5-3. A Prismatic Member in the Spatial Coordinate.

140




141

or in the concise matrix from:

{(Xm}=[T]{Xs) (5-6)

The first row of matrix [T] relates the structure axes to the Xm axis, and

can be written as:

r1 = cos (Xm, Xs)
s1 = cos (Xm, Ys)

t1 = cos (Xm, Zs)

Similar formulations are derived for r2, s2, t2 and r3, s3, t3.

If the displacements or forces are expressed in two different coordinate
systems, the coordinate transformation is used as the transformation
matrix between the two coordinates. For displacements, the relation is as

following:

{Dm}=[Rr]{Ds} 5-7
and for forces

{Fm}=[Rr]{Fs} (5-8)

where {Dm} and (Fm} represent the properties in member axes and {Ds]}
and (Fs} stand for the properties in structural axes. The transformation
matrix [Rt] is orthogonal, which consists of directional cosine matrix [T]

in diagonal terms. For a truss, the transformation matrix [ Rt ] is
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[RT]=[$%]

and for a frame , the transformation matrix [ Rt ] is

TOOO
OTOO
[Rr]=| ooTO
000T

Let [Km] and [Ks] be the stiffness matrix in member axes and
structural axes, respectively. Then the forces-displacements relationships

take the following forms:

(Fm)=[Km]{Dm} (5-9)
and

{Fs}=[Ks]{Ds} (5-10)
Substituting Equ.(5-7) and Equ.(5-8) into Equ.(5-9), it yields

{Fs)=[Rr]"[Km1[Rrl{Ds)} (5-11)
Compare equ(5-10) and equ(5-11), we have

[Ks]=[Rr1T[Km][Rr] (5-12)

Consider a typical space member i with two ends j and k, shown in

Figure 5-4 with axes Xs, Ys and Zs being parallel to the structural axes.




Figure 5-4. Rotation of Axes of a Space Member.
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The Xm is taken as the longitudinal axis of the member while the Ym and
Zm directions remain to be determined. Many ways can be selected for
determining the directions of the Ym and Zm axes. A convenient way is to
take the Zm axes as being lying in the Xs-Zs plane, as shown in the Figure
5-4. Once the Xm and Zm axes are determined, the Zm axis is located

automatically by right-handed rule.

When the member axes are determined in the above described manner,
there is no confusion about their orientations except in the case of vertical
member. In this case, the position of Zm axis in the horizontal plane is not
uniquely defined. The additional restriction will be made so that the Zm
axis is always taken to be the Zs axis. Two possibilities for this case are

shown in Figure 5-5, concerning vector from initial end to final end.

The transformation from the structure axes to the member axes may be
considered to take two rotaticn steps. The first rotation is Xs and Zs axes
rotate an angle 3 about Ys axis. This rotation moves the Xs axis to the
position denoted as X3 and moves the Zs axis to the final position denoted as

Zg (same as Zm). The transformation formula is written as follows:

{Xg}=[Tgl(Xs] (5-13)

where

cosf3 0 sinB]

-sinf3 0 cosfB3
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Ys:X'm

XY
y=270° \ S

ZsZm

Figure 5-5. Two Possibilities of the Vertical Member.




For the second rotation, Xg and YB rotate an angle y about Zg axis. This
rotation moves the X3 and Yg axes to the final positions Xm and Ym. The

transformation is expressed as:

{(Xm}=[Tyl{Xs} (5-14)

where

cosy siny 0
[Tyl =| -siny cosy O
0 01

Substituting Equ.(5-13) into Equ.(5-14) yields

{Xm} = [Ty]J[Ts1{Xs} (5-15)

Comparing above equation with Equ(5-6), we have the rotation matrix

[(T]=[Tyl(Tsl (5-16)

Let ( Xj, Yj, Zj) and ( Xk , Yk, Zk ) be the coordinates of initial end and

terminal end of the member, respectively. Then the directional cosines that

relate this structure axes to Xm axis is obvious as follows:

Xk-Xj
ri=r= L
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_Zk-Zj
t1=t— L

where L is the length of member, can be obtained from the coordinates of
two ends. Let q be equal to (r2+t2)12, and the rotation matrix in equation (5-

13) and (5-14) can be expressed as follows:

ol
o —t o
OO0 |+

[Ts]=

L)+
£

and

qs O
[T-,]:{-S q Ojl
001

Thus, the rotation matrix for transformation between the member axes and

the structure axes takes the following form:

r s ¢t
-res 'S.t
[T]=[TyNTsl=| a % qa (5-17)

The above rotation matrix [T] is valid for all positions of the member except
when the member is vertical. In the case of a vertical member, the
directional cosines of the member axes with respect to the structure axes

can be determined by inspection. Thus the rotation matrix is seen to be
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0s0O
[Tvert]=|:'s 0 0} (5-18)
001

Taking the appropriate rotation matrix ,either Equ(5-17) or Equ(5-18), to
acquire the desired rotation transformation matrix [Rr], the member
stiffness matrix in the structure axes is obtained. Then, assembly of the
contributions from each member to a joint, or, a node in finite element

procedure, yields the stiffness matrix of a unit cell as expressed in equ(5-5).

With the stiffness matrix of a unit cell being known, for a structural shape
which consists of a large number of unit cells, a system of equations for the
total structural shape can be assembled using the individual cell relations
following the finite element methodology. From the solution of the
equations, the stress distribution and deformation of the entire structure

under applied load can be calculated and analyzed.
NUMERICAL SIMULATIONS

The FCM was implemented by the use of computer simulation. With basic
parameters in a unit cell, such as yarn elastic modulus, fiber volume
fraction, yarn orientation and unit cell dimension fully characterized, the
applicability of the FCM to predict the structural response of composites

will be demonstrated experimentally.

Finite Element Implementation of FCM
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The Finite Cell Model just described has been implemented into finite
element program. The basic ideas of the Finite Cell Model are laid out as a
flow chart as shown in Figure 5-6. Figure 5-7 shows the more detailed
computational flow of forming stiffness matrix of a unit cell. By entering
the basic parameters for a unit cell and fiber/matrix properties to the
program, the load-deformation and elastic properties such as elastic

modulus and Poisson's ratio of the composite can be determined.

In addition, the results of structural analysis from separate studies show
that the truss unit cell is not a stable structure. Therefore, the frame model

is carried out in this numerical analysis.

The high symmetry composite material was proposed for structures with
high compression capability. The primary idea is to put high modulus
spheres into fiber reinforced materials. The fiber architecture discussed in
this report will be a X-Y-Z type of structure. The spheres are in contact
with each other and are confined by reinforced fibers. Ceramic material
will be used as matrix for high temperature environment. The unit cell of
the high symmetry composite is illustrated in Figure 5-8. From the
arrangement of fibers and spheres in this figure, the unit cell dimension

can be determined as the diameter of each individual sphere.
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Figure 5-6. The Flowchart of FCM Finite Element Program.
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Figure 5-7. The Flowchart of Stiffness Matrix Formulation
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In order to apply the finite cell modelling to the unit cell of high symmetry
composites, the representation of the three constituents of the composites,

i.e., matrix, fiber and spheres, need to be discussed. Consider a composite

with the volume fraction of matrix, fibers and spheres being Vm, Vr and
Vs, respectively. The unit cell dimension is HxWxT. Since the dimensions
of a unit cell are considered to be the center lines of members of the unit
cell, part of each bar lies outside the unit cell in real case. An averaging
method for the determination of the cross-section areas of the bars was
used. Assuming that each type of bars have the same cross-sectional area.
To simplify the analysis, assume that the yarns travelling in each direction
can be combined into four yarns in that direction. The four yarns are
assumed to travel along four corners in that direction. In this sense, the

cross-sectional area of the fiber-bars is obtained by the following formula:

Ap = VEHWT/4H+W+T)

For the representation of the sphere in a unit cell, the effective sphere-bar
with certain cross-section area will be assumed. The modulus of the
sphere-bar is the same as the modulus of the sphere. The cross-sectional

area of the sphere-bar is assumed to take the following form:

Ag = VGHWT// 4(H+W+T)

As for the matrix, which is used to transfer load, it can be represented as
bars along the three orthogonal axes. The cross-sectional area of the

matrix-bars is calculated by use of the following formula:




153

In the present case, the unit cell can be treated as a cube. Hence,

H=W=T
, or, the length of each bar is the same in present study. The cross-sectional
area of fiber-bars, sphere-bars and matrix-bars can be rewritten as the

following form:

Ay = V;H3/12H = V;H2/12
where i could be a fiber-bar, sphere-bar or matrix-bar.

From the above discussions, the cross-sectional area and length of each
bar, including the matrix-bar, fiber-bar and sphere-bar, are formulated.
The matrix-bar, fiber-bar and sphere-bar are modelled to travel along each
edge of a cubic uhit cell. For the analysis purpose, the three bars need to be
combined into a composite bar with individual contribution of the three
bars. The resultant properties of the composite bar is obtained rule of
mixture among the three bars. For the cross-sectional area of the

composite bar, A., it should be the sum of the cross-sectional areas of the

three bars, or,
Ac = Af+ Am + As

For the modulus of the composite bar, Eg, it can be obtained in the following

formula:
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ACEC = EfAf+ EmAm + ESAS

and the shear modulus of the composite bar is

l/Gc = VFIGf + Vm/Gm + VS/GS

For a sphere in a X-Y-Z architectured unit cell, the volume of the sphere is

obtained by the following formula:

Dy = (4/3)m(H/2)3

Thus, regardless of the dimension of the unit cell, the volume fraction of the

sphere in a unit cell is:

Vs = Dg/H3 = w6 =523%

Therefore, if the fiber volume fraction is 20%, the volume fraction of matrix

is 27.7%.

The spheres used for reinforcing the high symmetry composites are made
of alumina with modulus being 56 Msi(386 GPa). The fibers selected for
this study are Nicalon and FP-5 fibers, while the matrices are SiC, alumina
and LAS-III. The modulus of the materials are listed in the following
table:
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IBE MATRIX
FP-5 Nicalon SiC LAS-III Alumina
23.3 Msi 28.5 Msi 12.3 Msi 56 Msi 42 Msi
(161 GPa) (197 GPa) (84.8 GPa) (386 GPa) (290 GPa)

In a unit cell with dimension of .2"x.2"x.2", the cross-sectional areas of the

fiber, matrix, sphere and composite bars are listed in the following table:

\%§ Fiber Matrix Sphere Composite
(%) (in2) (in2) (in2) (in2)
2 000667 000923 001743 003333

By inputting the above moduli, cross-sectional areas and unit cell
dimension to the Finite Cell program, the response of the unit cell structure
under compression can be found. Figure 5-9 shows the loading condition
and boundary conditions of a specimen. The applied load was divided into
several steps on account of the possible nonlinear load-deformation
behavior due to geometrical conformation. In order to examine the effect of
matrix reinforced with alumina spheres, the predictions of the composites
without spheres are performed as well. The comparison of the stress-
strain curves between various combinations of fibers, matrices and spheres
are shown in Figure 5-10 to 5-13. From the figures, the high symmetry

composites with sphere reinforcements have higher Young's modulus.
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Figure 5-10. Compressive Stress-Strain Relationship of FP/SiC

Composites with/without Sphere Reinforcement.
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Figure 5-12. Compressive Stress-Strain Relationship of Nic¢/SiC

Composites with/without Sphere Reinforcement.
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Figure 5-14. Compressive Stress-Strain Relationship of FP/Alu

Composites with/without Sphere Reinforcement.
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To summarize from Figure 5-10 through Figure 5-15, the stiffness of the
LAS- and Alumina-matrix composites with sphere reinforcement showed a
higher value than the LAS and Alumina -matrix composites without
sphere reinforcement. However, in the case of the SiC-matrix composites,
no significant improvement of stiffness was shown. The reason is that the
modulus of embedded sphere is the same as that of the matrix SiC.
Therefore, the reinforcing effect is not seen. Hence, the addition of high

modulus spheres into softer matrix composites shows improved modulus.

The other method to account for the effect of spheres in the matrix is to treat
the matrix as particulate-filled system. Thus, the effective properties of the
matrix can be described by Kerner's equation, which takes the following

form for shear modulus:

( N

Vs Gs Vm
+
(7-5V, G +(8-10Vy Gs 15(1- V)
Gme = Gm
VsGm Vm
+
(7-5V, Gy +(8-10Vy Gg 15(1- V)
N /

where V represents volume fraction, and subscripts m and s represent
matrix and sphere phases, respectively. Conversion of shear to tensile
modulus may be made by using the isotropic relation

E = 2Gm e( 1+v)

me
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where the Poisson's ratio, Vv, is given by a rule-of-mixture expression

With this consideration, the cross-sectional area of the fiber-bars is

calculated by the previous formula:

Ar = VEHWT /4(H+W+T)

As for the sphere-filled matrix, the cross-sectional area of the effective

matrix-bars is calculated by use of the following formula:

The resultant properties of the composite bar is obtained by rule of mixture

among the two bars. For the cross-sectional area of the composite bar, A,

it should be the sum of the cross-sectional areas of the three bars, or,

For the modulus of the composite bar, E, it can be obtained in the following

formula:

AcEc = EfAf+ EmeAme

and the shear modulus of the composite bar is
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By inputting the effective moduli, cross-sectional areas and unit cell
dimension to the Finite Cell program, the response of the unit cell structure

under compression can be found.

Figure 5-16 and Figure 5-17 show the effect of sphere volume fraction and

fiber volume fraction, respectively.
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Figure 5-16. The effect of sphere volume fraction on Compressive

Stress-Strain Relationship of Nic/LAS Composites.
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Stress, Ksi

Strain, %

Figure 5-17. The effect of sphere volume fraction on Compressive

Stress-Strain Relationship of Nic/LAS Composites.

In Finite Cell Modelling, the basic assumption on material-bar
representaticns simplifies the analysis of high symmetry composites. The
treatment of composite bar by use of the rule-of-mixture stems from the
complexity of the interaction between fiber, sphere and matrix. The actual
composite behavior around sphere surface and sphere-fiber contact points
is very complicated. In addition to compressive stress, the shear stress,
which transfers the load from sphere and fiber to matrix, takes place. The
neglect of the shear stress may result in an inaccurate prediction of elastic
behavior. But, v-~e degree of inaccuracy is not under consideration in Finite
Cell Modelling. The predictions should be evaluated by experimental
results. Further studies on this model to investigate the interaction
between fiber and matrix have to be conducted. The load transfer
mechanism between fibers, spheres and matrix as well as the effect of fiber
architecture in a unit cell needs to be explored. This may lead to a 3-D solid

element modelling on the unit cell of a high symmetry composite.
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A 3-D finite element code for analyzing the deformation of hollow spheres
was developed and is discussed in the following section. This program can
be integrated with finite cell modelling to further investigate the the effect of

fiber/sphere interaction.




CHAPTER SIX
FABRICATION OF HIGH SYMMETRY COMPOSITES

In order to implement the concept of high symmetry structures, a method
for the creation of a 3-D fiber network and the placement of the sphere was

developed.

The hexagonal braiding machine (HBM) consists of the following

components:
* motion motor array (MMA)
* Jocating system (LS)
* sphere feeding mechanism (SFM)
* hexagonal drivers (HD)
* sphere tank (ST)
* carriers (C)
* take down mechanism (TDM)

As illustrated in Figure 6-1, the MMA consists of step motors and control

units connected directly to a computer which offers precise control of
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independent motion for each yarn carrier. Figure 6-la is a schematic
illustration of the hexagonal braiding machine (HBM). The motion motor
array (MMA) is the principal driver which propels the carriers in a
hexagonal pattern to create various fibrous networks that can range from
orthogonal to the close-to-cubic 3-D quadraxial structure. The locating
system along with sphere feeding mechanism meter the spheres into the
fibrous network after each braiding operation. These operations are
followed by a take-down motion which collects the 3-D fiber/sphere assembly

into a storage package for composite fabrication.

To facilitate the fabrication process and assure reproducibility and
numerical control system is organized and implemented through a
computer. The control logic and data flow are shown in Figure 6-2. The
resulting structures which can be created by the HBM are illustrated in

Figure 6-3. In Figure 6-4 a model of the high symmetry system is shown.
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Figure 6-4 A Model of High Symmetry System.
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CHAPTER SEVEN

CONCLUSIONS AND RECOMMENDATIONS

In the interest of developing toughened and hardened composite systems,
the concept of structural symmetry by the placement of spheres in a 3-D
fiber network was examined. By employing a 3-D fiber architecture, the
composite system is anticipated to be toughened by the 3-D fiber network
through complex interaction of toughening mechanism. The spheres,
when strategically placed in a prearranged fiber network, will contribute to

the hardening of the composite.

To demonstrate this concept of High Symmetry Composite (HSC), a

systematic study was carried out and organized into three parts:
Part I. Classification of 3-D Fiber Architecture
Part I[I. Modelling of High Symmetry Systems

Part III. Demonstration of Concept
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In Part I of this study, 3-D fiber architectures were classified according to
the method of manufacture, symmetry and geometric isotopy. It was
concluded that a classification scheme based on geometric isotopy provides
the most efficient and useful method for the modelling of the 3-D composite

system.

The modelling effort in Part II of the study consists of the development of a
finite element code for the sphere; a finite cell model (FCM) for the 3-D fiber
network. The sphere routine is capable of handling elastic and
elastoplastic materials for laminated shell of isotropic and/or orthotropic
layers under radial and tangential surface forces, as well as internal
pressure loading. The finite cell code, on the other hand, was developed
based on the idealization of the unit cell geometry in terms of truss systems.
According to the principle of virtual work, the nodal forces within the cell
structure are related to the nodal displacement by a stiffness matrix [K].
This finite cell code has been employed to predict the tensile stress-strain
relationship of chemical vapor infiltrated (CVI) 3-D braided Nicalon
SiC/SiC composites. With a volume fraction of 0.4 and using a 1 x 1
braiding pattern for the Nicalon yarn, the theoretical prediction of the
tensile stress-strain relationship agrees reasonably well with the

experimental results as shown in Figure 7-1.
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Using the FCM, parametric studies were carried out for various ceramic
matrix composite systems. As expected, the inclusion of the sphere

reinforcement does improve the compressive stiffness.

In order to transform the high symmetry composite concept to reality, there
is a need for a mechanism to create the structure. Part III of this study is
dedicated to this effort. Unfortunately, due to the shortage of funding for
the third year, only the manufacturing methodology was explored. The
proposed method is based on a hexagonal braiding process which
incorporates a sphere feeding mechanism. This manufacturing system
was designed with full support of computer logic flow. Accordingly, when
the prototype machine is built, a numerically controlled, reproducible
preforming system will be available for the manufacturing of high

symmetry composites.

Finally, it must be concluded that although the concept of high symmetry
composites has been theoretically and conceptually demonstrated which
simulated results and preforming mechanism. a considerable amount of
work remains to be done in the verification of the model and design
concepts. It is recommended polymer and ceramic matrix composites with
3-D fiber/sphere reinforcements to be fabricated, first manually and then on
the hexagonal braiding machine (when it is available). Tensile and
compressive tests will be performed on these composites. The failure

modes will be characterized by fractography. It is further recommended
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that further work be carried out to link the sphere code to the finite cell code
such that the interaction of the 3-D fiber network with the sphere be fully

explored.
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APPENDIX A

LISTING OF FINITE CELL MODELLING PROGRAM
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-- THIS PROGRAM IS DESIGNED TO DEMONSTRATE THE CONCEPT AND FORMULATIONS
-- OF FINITE-CELL MODELLING for X-Y-Z fiber reinforced composites.
-- The maximun number of unit cells of this program is 5.

IMPLICIT DOUBLE PRECISION (A-H,0-2)

COMMON /ARR/ DISP(72),FORCE (72),FORCE1L (72),DISP1(72)
COMMON /ARR1/ FORCE2(72),CORD(72),COOR(72)
CHARACTER*20 INFILE,OUTFIL

COMMON /PARAM/ E (4),G(4),A(4),DIA(4),FR,EA(4),EAL(4)
COMMON /REDUCT/ IRN, IRDOF,IR2,IRR2,IR1,IR5,IK6,IRR6
COMMON /NUMBER/ NCELL, NOD,NDCF,NBC,NFORCE,NSTEP, ITER
COMMON /INDEX/ IND(72),IBC(72),KL(72),IREDUCE(72),IDELE (6, 8)
COMMON /STIFl/ STIFF(72,72)

COMMON /STIF/ STIFF1(48,48),COR(24,3)

COMMON /MCONN/ MCN(6,16,2)

COMMON /MATRIX/ B(72,72)

COMMON /VALUE/ RATIOL,RATIOZ,RATIO,TDIS

CHARACTER*1 ANS

-- CPEN INPUT DATA FILE -——-
CPEN (UNIT=10,FILE='INFILE', STATUS='OLD')

-- READ THE NUMBER OF UNIT CELLS ==—===
READ (10,*) NCELL

--- READ THE COORDINATES OF EACH NODE ==—=-
READ(10,*) NOD
NDOF=6~NOD
O 20 I=1,NOD
READ (10, 2001) COR(I,1),COR(I,2),COR(I, 3)

27 CCNTINUE

-- STCRE THE CELL CONNECTION  =——==-

20 25 I=1,NCELL
25 READ(10,*) (IDELE(I,J), J=1,8)

-- STCRE THE UNIT CELL MEMBER CONNECTION
20 27 I = 1,NCELL
READ (10,*) (MCN(I,J,1),J=1,12)
READ (10, *) (MCN(I,J,2),J=1,12)
27 CONTINUE
-- ENTRY OF BOUNDARY CONDITIONS FOR DISPLACEMENTS = =—===--
DO 30 I=1,NDOF
37 IND(I)=1
READ (10, *) NBC

-- IND = 0 (FIXED SUPPORT), IND =

(=)

(FREE SUPPORT) = ———m———m

DO 35 I=1,NBr

READ (10, *) IBC(I)
IBC1=6* (IBC(I))-5
IBC2=6* (IBC(I))-4
IBC3=6*(IBC(I))-3
IBC4=6* (IBC(I))-2
IBCS=6* (IBC(IL))-1
IBC6=6* (IBC(I))

35 READ(10,*) IND(IBC1l),IND(IBCZ2),IND(IBC3),IND(IBC4),IND(IBCS),

- e v————
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5 IND (IBC6)
~ ENTRY OF BOUNDARY CONDITIONS FOR FORCES

DO 40 I=1,NDOF

FORCE(I)=0.0

FORCE1(1)=0.0

DISP(I)=0.0

DISP1(I)=0.0

CONTINUE

READ (10, *) NFORCE

DO 43 I=1,NFORCE

READ (10, *) IFORC

IFORC1=6*IFORC-5

IFORC2=6*IFORC-4

IFORC3=6*IFORC-3

IFORC4=6*IFORC-2

IFORC5=6*IFORC-1

IFORC6=6*IFCRC

READ (10, *) FORCE (IFORC1), FORCE (IFORC2) , FORCE (IFORC3),
& FORCE (IFORC4) , FORCE (IFORCS) , FORCE (IFORC6)

43 CONTINUE

MATERIAL PROPERITIES

READ (10, 2001) VF,VFB,VM

READ (10,2002) EF,PF,EM,PM, EBALL
READ(10,2001) HEIGHT,WIDTH, THICK
READ (10, *) NX,NY,NZ

HL=HEIGHT

WL=WIDTH

TL=THICK
ABALL=VFB*HL*WL*TL/ (4.* (HL+WL+TL))
VE*HL*WL*TL/ (4.* (HL+WL+TL) )
VM*HL*WL*TL/ (4, * (HL+WL+TL))
\ AF + AM + ABALL

print *, af,am,aball, ac

5
o

EB3ALLX = (EBALL/ARBALL) *HL
eballx = eball

EBALLY = EBALLX

EBALLZ = EBALLX

GF = EF/(2.+2.*PF)
GM = EM/ (2.+2.*PM)
GB = EBALL/(2.+2.*.3)
A(l)
A(2) AC
A(3) AC
acl=af/ac
ac2=am/ac
ac3=aball/ac
print *, acl,ac2,ac3
E(1)=(AF*EF+AM*EM+EBALLX*ABALL) /A (1)
E(2)=(AF*EF+AM*EM+EBALLY*ABALL) /A (2)
E (3)=(AF*EF+AM*EM+EBALLY*ABALL) /A (3)
if(vfb.eq.0.) then

GC = 1./(PF/GF+PM/GM+.3/GB)

AC

endif

gc = 1./ (pf/gf+pm/gm)
G(l) = GC

G(2) = GC

G(3) = GC

DIA(1)=DSQRT (4.*A(1)/3.14159)
DIA(2)=DSQRT(4.*A(2)/3.14159)
DIA(3)=DSQRT (4.*A(3)/3.14159)
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55

60

EA(1)=E(1)*A(1)
EA(2)=E(2) *A(2)
EA(3)=E(3)*A(3)
EAL(1)=EA(1)/HL
EAL (2) =EA (2) /WL
EAL (3)=EA(3) /TL
FORMAT (3F10.0)

FORMAT (SF10.0)

CLOSE (UNIT=10)

DO 55 I=1,NDOF

COOR(1)=0.

DO 60 I = 1,NOD

I1 = 6*I-5

I2 = 6*I-4

I3 = 6*I-3

COOR(I1l) = COR(I,1)

COOR(I2) = COR({I,2)

COOR(I3) = COR(I,3)

CONTINUE

PRINT *,' HOW MANY STEPS ? !

READ (5, *) NSTEP

PRINT *,° ENTER LOAD INCREMENT !
READ (5,*) DLOAD

PRINT *,' ENTER THE RATIOC OF FRAME JOINT '
READ (5, *) FR

ENTER ULTIMATE STRENGTH ( KSI ) '
UTS

PRINT *,°'
READ (5, *)

INCREMENTAL LOAD LOOP STARTS HERE

OPEN(UNIT=50, FILE='OUTFIL', STATUS='UNKNOWN')

WRITE(50,*) ' NSTEP ', * DLOAD ',' FR
WRITE (50,1007) NSTEP,DLOAD, FR, UTS

WRITE (50, *)

WRITE (50, *)

WRITE(50,*) ' EX ‘,'EY ','E2Z
WRITE (50,1008) E

WRITE (50, *)

WRITE (50, *) ' AX ','aY ', 'AZ
WRITE (50,1008) A

WRITE (50, *)

WRITE(50,*) ' DX ', 'DY ','D2Z
WRITE (50,1008) DIA

WRITE (50, *)

WRITE (50,*) ' PX '

WRITE (50,1008) PX

WRITE (50, *)

WRITE(50,*) ' HL ', 'WL ', 'TL
WRITE (50,1008) HEIGHT,WIDTH, THICK

WRITE (50, *)

WRITE (50, *) ! NX*, ' NY',' NZ'

WRITE (50,1010) NX,NY,N2

WRITE (50, *)

WRITE (50, *) ' EAX ', "EAY ', 'EAZ
WRITE (50,1008) EA

WRITE (50, *)

WRITE (50, *) ' EAX/L ', "EAY/L ','EAZ/L

WRITE (50,1008) EAL

UTS'

','EAB L]

', "EAB/L '
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WRITE (50, *)

WRITE (50, *)

WRITE (50, *) 'DATA OF 3-NODE '

WRITE (50, *)

WRITE (50,*) ' FORCE ',' STRESS
&Exx ', VRy !

DO 1000 ILOOP=1, NSTEP
RATIOl=4.*ILOCP*DLOAD/ (WIDTH*THICK)
RATIO=DLOAD* (ILOOP)

--- ITERATION OF ONE STEP ILOAD STARTS
DO 999 ITER=1,10

--- FORM STIFFNESS MATRIX

DO 99 I=1,NDCF
DC 99 J=1,NDOF
39 STIFF (I, J)=0.
DO 98 I=1,48
DO 98 J=1,48
28 STIFF1(I,J)=0.
DO 100 KK=1,NCELL

--- OPERATION ON LOCAL ELEMENT

DO 110 L=1,8
LI=IDELE (KX, L)

L1=6*L-5
L2=6*L-4
L3=6*L-3
L4=6*L-2
L5=6*L-1
L6=6*L
KL(L1)=6*LI-5
KL (L2)=6*LI-4
KL (L3)=6*LI-3
KL (L4)=6*LI-2
KL (LS)=6*LI-1
KL(L6)=6*LI

13 CONTINUE

CALL FORM(48, KK)

--- STORE LOCAL [K] TO GLOBAL (K]

DO 120 I=1,48

DO 120 J=1,48

IX=KL(I)

IY=KL (J)

STIFF(IX,IY)=STIFF (IX,IY)+STIFF1(I,J)
120 CONTINUE
100 CONTINUE

IF (ITER.EQ.1) THEN

GOTO 170

ENDIF

-——-- CALCULATE BIASED LOAD FOR ITERATION
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DO 150 I=1,NDOF

FORCE2 (1)=0.

DO 150 J=1,NDOF

FORCE2 (I)=STIFF (I, J) *DISPl (J) +FORCEZ2 (I)
150 CONTINUE

RATIO2=RATIO~-FORCEZ2 (1)

IF (RATIO2.LT.0.001) THEN

GOTO 400

ENDIF
-—~ APPLY BOUNDARY CONDITIONS TO REDUZTF THE SIZE OF GLOBAL [K]
170 J=0

DO 200 I=1,NDOF

IF (IND(I).EQ.0) THEN

J=J+1

IREDUCE (J)=I

ENDIF
200 CONTINUE

IRN=J

-—- COLUMN REDUCTION

IR2=1
DO 210 IR1=1,NDOF
IF(IR2.GT.IRN) THEN
GOTO 215
ENDIF
IF (IR1.EQ. IREDUCE(IR2)) THEN
IR2=IRZ2+1
GOTO 210
ENDIF
215 IRRZ=IR1-IR2+1
FORCE1 (IRR2) =FORCE (IR1)
DO 216 IR3=1,NDOF
216 STIFF(IRRZ,IR3)=STIFF (IR1,IR3)
2.0 CONTINUE
IRDOF=IRR2

-=- ROW REDUCTION

IR6=1
DO 250 IR5=1,NDOF
IF (IR6.GT.IRN) THEN
GOTO 255
ENDIF
IF(IR5.EQ. IREDUCE(IR6)) THEN
IR6=IR6+1
GOTO 250
ENDIF
255 IRR6=IR5-IR6+1
DO 256 IR7=1, IRDOF
256 STIFF(IR7,IRR6)=STIFF (IR7,IRS)
250 CONTINUE

- CALCULATE INVERSE OF REDUCED (K]
DO 260 I=1, IRDOF
DO 260 J=1, IRDOF
260 B(I,J)=STIFF (I, J)

CALL INV(IRDOF)
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275 DO 300 I=1,IRDOF
DISP(I)=0.
DO 300 J=1, IRDOF
300 DISP(I)=B(I,J)*FORCE1 (J)*RATIO+DISP (I)

- RESTORE THE DISPLACEMENTS

IR8=1
DO 350 I=1,NDOF
IF (IREDUCE (IR8) .EQ.I) THEN
IR8=IR8+1
GOTO 350
ENDIF
IR9=I-IR8+1
DISP1 (I)=DISP (IR9)
350 CONTINUE

--- CALCULATE THE DISPLACED COORDINATES

DO 380 I=1,NDOF
330 CORD(I)=COOR(I)+DISP1(I)
DO 390 I =1,NOD
Il 6*I-
I2 6*1-
I3 6*1-
COR(I, 1)
COR(I,2)
COR(I, 3)
2C CONTINUE
93 CONTINUE

CORD (I1)
CORD (I2}
CORD (I3)

o nwasw»

-
3
-
S
2

- PRINT OUT THE RESULTS

400 TDIS=CORD (13)-COOR(13)
YDIS=CORD (14) -COOR(14)
ZDIS=CORD (15) -COOR (15}
STRAIN=TDIS/HEIGHT
SY = YDIS/WIDTH
SZ = ZDIS/THICK

Exx = RATIOl/STRAIN
Vxy = -SY/STRAIN
Vxz = -SZ/STRAIN

WRITE (50,1006) RATIO,RATIOl, STRAIN, Exx,Vxy
--- THE END OF THE LOOP

UTS1 = 1000.*UTS
IF (RATIO1.GT.UTS1) THEN
GOTO 500
ENDIF
2000 CONTINUE
500 WRITE(50, *)
WRITE (50, *)
WRITE (50, *) 'FINAL DISPLACEMENT OF ALL NODES '
WRITE (50, *)
WRITE(50,*) ' X LI '¢ '
& NO. '
DO 501 I=1,NOD
J1=6*I-5
J2=6*I-4
J3=6*I-3
WRITE (50, *)
501 WRITE(50,1009) DISP1 (Jl),DISP1(J2),DISP1(J3),I

’

Z
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WRITE (50, *)

WRITE (50, *) 'FINAL ROTATION '

DC 505 I=1,NCD

Jl=6*I-2

J2=6*I-1

J3=6*1

WRITE (50, *)

WRITE (50,1009) DISP1(Jl),DISPl(J2),DISP1(J3),I
CLOSE (UNIT=50)

',13)

FORMAT (/'REDUCED [K] ',' ILOOP
FORMAT (/2E16.6)

FORMAT (/'INVERSE (K] ',' ILOOP
FORMAT (/12E10. 3)

FORMAT (/4E16.7)

FORMAT (/SE14.5)

FORMAT (/I110,3F12.2)

FORMAT (4E12.4)

FORMAT (3E14.5,I6)
FORMAT (2X, 3I5)

',13,° ITER

', I3, ITER ',13)

STOP
END

THIS SUBROUTINE IS TO FORM THE CELL STIFFNESS MATRIX
SUBROUTINE FORM(IQAZ, KK)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMMON /STIF/ STIFF1 (48,48),COR(24,3)

COMMON /MCONN/ MCN (6,16, 2)

COMMON /PARAM/ E(4),G(4),A(4),DIA(4),FR
DIMENSION SM(12,12),SR(12,12),SK(12,12),GK(48,43)
DIMENSION RM(3, 3) ,RTM(12,12)

INTEGER IQAZ

DO 100 I 1,TI0AZ
DC 100 J 1, IQAZ
STIFF1(I,J)=0.0

FORM THE COORDINATE TRANSFER MATRIX ({R]

DO 600 M = 1,12

II = MCN(KX,M,1)

JJ = MCN(KX, M, 2)
COR(JJ,1)-COR(II,1)
COR (JJ, 2)-COR(I1I, 2)
COR(JJ, 3)-COR(II, 3)
SL = DSQRT (X*X+Y*Y+Z*2)
X/SL

Y/SL

2/SL

RT = DSQRT(R*R+T*T)

N
Wonou

H WX
[}

FORMAT (/BE15.5)
[R] FOR MEMBERS THAT ARE IN THE DIRECTION OF Y-AXIS

IF(RT.LT.0.001) THEN
RM(1,1)=0.
RM(1,2)=S
RM(1, 3)=0.
RM(2,1)=-S
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115
120

125
130

150

155

160

RM(2,2)=0.

RM (2, 3)=0.

RM(3,1)=0.

RM (3, 2)=0.

RM(3, 3)=1.
ELSE

[R] FOR OTHER MEMBERS

RM(1,1)=R
RM(1,2)=S
RM(1, 3)=T
RM(2,1)=-R*S/RT
RM(2,2)=RT
RM (2, 3)=-S*T/RT
RM(3,1)=-T/RT
RM(3,2)=0.
RM (3, 3)=R/RT
ENDIF
DO 102 I=1,12
DO 102 J=1,12
RTM(I,J)=0.
DO 105 I=1,3
DO 105 J=1,3
RTM (I, J)=RM(I,J)
RTM(I+3,J+3)=RM(I, J)
RTM(I+6,J+6)=RM(I,J)
RTM(I+9,J+9)=RM(I,J)
CONTINUE

GET MATERIAL PROPERTIES FOR EACH MEMBER

IF (M-4) 110,110,115
N=1

GO TO 150

IF(M-8) 120,120,125
N =2

GO TO 150

IF(M-12) 130,130,130
N =3

H = 3.14159*DIA(N)**4./64.

Q = E(N)*A(N)/SL

F = (12.*E(N)*H/SL**3.)*FR
B = (6.*E(N)*H/SL**2.)*FR
C = (2.*E(N) *H/SL) *FR

D = (2.*G(N)*H/SL)*FR
FORM MEMBER STIFFNESS MATRIX [SM]
DO 160 I = 1,12

DO 160 J = 1,12

SM(I,J) = 0.

sM(1,1) =2Q

SM(1,7y = -Q

sM(2,2) =F

SM(2,6) =B

SM(2,8) = -F

SM(2,12) = B

SM(3,3) =F

SM(3,5) = -B

SM(3,9) = -F

SM(3,11) = -B

SM(4,4) =D

- T e VR T
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185

Ve Q)

195

SM(4,10)
SM(S, 5)
sSM(5, 9)
SM(S,11)
SM(E, 6)
SM(6, 8)
SM(6,12)
SM(7,7)
sM(8, 8)
SM(8,12)
SM(9,9)
SM(9,11)
SM(10,10)

/I T T (T T T/ 1 I |

.*C
.*C

APPLIED SYMERTIC CONDITION

bo 170 I =1,11
DO 170 J = I+1,12
SM(J,I) = SM(I,J)
FORM [SM] [R]
DO 175 I = 1,12
DO 175 J = 1,12
SR(I,J) = C.
DO 175 K = 1,12
SR(I,J) = SR(I,J)+SM(I,K)*RTM(K,J)
FORM [RT] {SM] (R]
DO 185 I = 1,12
DO 185 J = 1,12
SK(1,J) = 0.
DO 185 K = 1,12

KL (I,J) = SK(I,J)+RTM(K,I)*SR(K,J)
STORE MEMBER STIFFNESS ([SK] IN TO UNIT CELL STIFFNESS MATRIX
DO 195 I = 1,48
DO 195 J = 1,48
GK(I,J) = 0.
IT=MCN(1,M,1)
JJ=MCN(1,M, 2)
DO 200 12 = 1,12
IF(I2.LT.7) THEN

I3 = (II-1)*6+I2
ELSE

I3 = (JJ-1)*6+I2-6
ENDIF
DO 200 J2 = 1,12
IF(J2.LT.7) THEN

J3 = (II-1)*6+J2
ELSE

J3 = (JJ-1)*6+J2-6
ENDIF
GK(I3,J3) = SK(I2,J2)
CONTINUE
DO 210 I 1,48

DO 210 J = 1,48

STIFF1(I,J) = STIFF1(I,J)+GK(I,J)
CONTINUE

RETURN
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END

———- SUBROUTINE FOR MATRIX INVERSION

100

210
200

10
20
35
40

50

60
70
80
300

400

SUBROUTINE INV (N)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON /MATRIX/ B(72,72)
DIMENSION A(72,144)

EPS=1.E-18

DO 100 I=1,N

DO 100 J=1,N
A(I,J)=B(I,J)

L=N+1

M=2*N

DO 200 I=1,N

DO 200 J=L,M

a(1,J)=0.

IF (I+N-J) 200,210,200
A(I,J)=1.

CONTINUE

DO 300 I=1,N

K=I

IF (I-N) 10,40,10

IF (A(I,I)-EPS) 20, 30,40
IF (-A(I,I)-EPS) 30, 30,40
K=K+1

DO 35 J=1,M
A(I,J)=A(I,J)+A(K,J)

GO TO 10

DIV=A(I,I)

DO 50 J=1,M
A(I,J)=A(I,J)/DIV

DO 300 K=1,N
DELT=A (K, I)

IF (DABS (DELT) -EPS) 300, 300, 60
IF(K-1) 70,300,70

DO 80 J=1,M
A(K,J)=A(K,J)-A(I,J) *DELT
CONTINUE

DO 400 I=1,N

DO 400 J=L,M

K=J-N

B(I,K)=A(I,J)

CONTINUE

RETURN

END
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FINITE ELEMENT CCNE FOR HOLLOW SPHERES

INTRODUCTION

The hollow sphere is a major component in the high symmetry ceramic
matrix composite which is studied in this research. Fig. 1 illustrates the
conceptual unit cell of the composite in which closely packed spheres are
embedded in the 3-D fiber network. To describe the load-deformation
response of the total unit cell and the internal stresses in the constituent
components of the unit cell, the response of the individual spheres must be
described first and then incorporated in the total UNIT CELL model.

Since the UNIT CELL model has been described elsewhere in this
report, this section present only the results stemming from our efforts in
developing a finite element code for a single sphere which is subjected tc

surface forces, internal pressure and/or thermal loading.

GENERAL CHARACTERISTICS OF THE FINITE ELEMENT CODE

The finite element code is developed based on the so-called
degenerated quadratic plate/shell element formulation found in the outlines
of Hinton and Owen [1]. In essence, the usual assumptions made in the
simple plate/shell theories continue to be valid in the formulation of the
code. These include the assumptions of simple hending: the omission of
deformation in the thickness direction and any deformation caused by
transverse shear. Thus, there are only 5 degree-of-freedom at each node;
namely, three displacements and two rotations.

The so-called degenerated isoparametric elements include three
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different configurations: the 8-node Serendipity, the 9-node Lagrangian and
9-node Heterosis. The Serendipity is the simplest, requiring a normal rule
of integration such as the 3x3 Gauss quadrature approach. This type of
element, however, has been shown to yield stiff solutions if the shell is
thin (as compared to it's radius). To improve the accuracy of the computed
stresses, a reduced integration technique such as suggested in Hinton and
Owen [1] may be followed for shells of thin thicknesses. The 9-node
Lagrangian is basically the 8-node serendipity with an additional middle
node in the center of the quadrilateral element. Usually, a full integration
technique must be followed, though the reduced integration method can also
be used. However, problems of reduced rank (or rank deficiency) may
sometimes arise in the stiffness matrix if the reduced integration
technique is used. While the additional node helps to improve the computed
results, it nevertheless causes increased degree-of-freedom of the element
and requires a different set of the nodal shape functions. The Heterosis is a
mix of the Serendipity and the Lagrangian in that the element employs
serendipity shape functions for the transverse displacement w and the
Lagrangian shape function for the rotations. This allows selective
integration techniques to be used. Choice of these different element shapes
is @ matter of decision to be made for the specific problem which is to be
analyzed [1].

The code can analyze structures constructed using shell elements,
such the hollow sphere. The material of the sphere may be elastic and/or
elasto-plastic; the sphere may be concentrically layered with isotropic
and/or orthotropic materials; the applied load may be surface forces (radial
and tangential, concentrated or distributed), internal pressure and/or

temperature changes.
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The code uses the FRONTAL solver for the finite element solution. A
flow chart showing the block structure and the computational flow of the
program is provided in Fig. 2.

A brief version of the user's instruction is provided at the end of this
section.

A listing of the code PLASTOSHELL is provided in the appendix.

REFERENCE

(1] "Finite Element Software for Plates and Shells" Hinton and Owen,
Pineridge Press, Swansea, 1984.
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Fig. 1 Close Packing of Spheres in A 3-D Fiber Network




DIMEN
Presets the variables associated with the
dynamic dimensioning process
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INPUT
Inputs data defining geometry, boundary
conditions and material properties
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Fig. 2 Flow Chart for the PLASTOSHELL Code (continued on next page)
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ITERATION LOOP

|
1

NO

LDISP
Evaluates the large
displacement matrix B

STIFF
Calculates the

element stiffnesses L
for elastic and

elastoplasticmaterial

behaviour, taking xp GEOME

account the geometric Calculates the geo-

nonlinearities for
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metric stiffness
matrix K

analysis
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frontal method

|

L_ RESTR INVAR
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evaluates the equi-
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FLOWS
Determines the flow
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CONVER
Checks to see if the solution process has
converged and evaluates the residual force

vector
Y ¥ES

OUTPLUT
Prints the results for this load increment

|

RESTAR
Records on tape the data needed to restart the
problem 1n the next increment

I ]

END




USER INSTRUCTION FOR PREPARING THE INPUT DATA

The program undertakes elastic or ultimate load analysis (if material

is elasto-plastic) of thin, thick and layered plates and/or shells, including

the full sphere. To execute a specific problem, element mesh must be

generated first. This code assumes that the element mesh has already been

generated and that the coordinates of each node are all known. Thus, the

required

generation.

input data format described below does not inciude mesh

The general order of the input data is as follows:

-

i

-

Card Set 1 - Title Card (12A6)

characterization of elements

specification of material(s) and shell thickness structure

nodal coordinate connections

specification of boundary conditions

specification of loading

output instruction

one card

Card Set 2 - Control Card (1215) One card
Cols. 1-5 NPOIN

6-10 NELEM
11-15 NVFIX

16-20 NNODE

21-25 NMATS
26-30 NGAUS

Total number of nodal points

Total number of element

Total number of points where one or more
degrees of freedom are prescribed
Number of nodes per element

8 - for 8 node Serendipity

9 - for Heterosis and 9 node Lagrangian
Total number of different materials

Number of Gauss points per element




31-35 NGAUZ

36-40 NCOLA

41-45 NALGO

46-50 NINCS
51-55 NLAYR

56~60 LARGE

61-65 NREST

Number of Gauss points per element (Shear)

NGAUS=3, NGAUZ=3 - Normal integration rule

NGAUS=3, NGAUZ=2 - Selective integration
rule

NGAUS=2, NGAUZ=2 - Reduced integration

rule

Set the constraints for the Lagrangian 9

node element:

=0 9 node Lagrangian element (no comnstraints)

=1 Heterosis - constrain the 9th node dis-
placements (u,v,w)

Nonlinear solution process indicator:

=1 initial stiffness method is used

=2 tangential stiffness method is used

=3 stiffness matrix is recalculated in the
first iteration of each increment

=4 stiffness matrix is recalculated in the
second iteration of each increment and
also when there are one or more unloaded
integration points in the previous
iteration

Total number of load increments

(i) Total number of layers through the

thickness (PLASTOSHELL)
(ii) Total number of layer patterns in
*he structure (CONSHELL)

Large deformation parameter

=0 Geometrically linear analysis

=1 Geometrically nonlinear analysis

Restart facility parameter

=0 to start the analysis

=1 to restart the analysis from the last

previously converged load increment




CARD SET 3 (5F10.5) One Card
Cols. 1-10 GRAVI(1l) Gravitational acceleration im the
x-direction
11~-20 GRAVI(2) Gravitational acceleration in the
y-direction
21-30 GRAVI(3) Gravitational acceleration in the
z-direction
31-40 ANVEL Angular velocity (referred to the z axis)
(1) PLASTOSHELL
CARD SET 4 - ELEMENT CARDS (1615,/,5X,15I5) On2 or two Cards

for each element
Cols. 1-5 NUMEL Element number

6-10 MATNO(NUMEL) 'Material property number for each
+
: (NUHEL’I)'layer, ILAYR from Bottom to Top
56-60 MATNO(NUMEL, (case of NLAYR = 10)
NLAYR)

61-65 LNODS (NUMEL, 'Element node numbers (anticlockwise)
' INODE)

106-110 LNODS(NUMEL, (Case of NNODE = 9)
NNQDE)

(11) CONSHELL
CARD SET 4 - ELEMENT CARDS (111I5) One Card for each element
Cols. 1-5 NUMEL Element number

6~-10 MATNO(NUMEL) Element layer pattern number

11-15 LNODS(NUHEL,IH

16-20 LNODS(NUMEL,2) Element nodc number (anticlockwise)

[
'

46-50 LNODS (NUMEL ,8)
51-55 LNODS(NUMEL,Q)}(Case of NNODE = 9)
CARD SET 5 NODAL COORDINATE CARDS (15,4F15.10/5X,4F15.10)

Two Cards for each node whose coordinates must be
input - finishing with the last node. (Coordinates
of the central 9th node and also mid-side nodes
whose coordinates are obtained by a linear inter-~
polation of the corresponding corner nodes need not

be input).

s e v A e .
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!1r:t Card
Cols. 1-5 IPOIN Node number
6-20 COORD(IPOIN,1) Top x coordinate
21-35 COORD(IPOIN,2) Top y coordinate
36-50 COORD(IPOIN,3) Top z coordinate
51-65 COORD(IPOIN,4) Top pressure
Second Card
Cols. 6-20 COORD(IPOIN,5) Bottom x coordinate
21-35 COORD(IPOIN,6) Bottom y coordinate
36-50 COORD(IPOIN,7) Bottom z coordinate
51-6% COQRD(IPOIN,8) Bottom pressure
CARD SET 6 RESTRAINED NODE CARDS (15,5X,15,5X,5F10.6) One
Card for each restrained node. (Total of NVFIX
Cards)
Cols. 1-5 NOFIX Restrained node number
11-15 IFPRE Condition of the degree of freedom:
restrained (=1)
otherwise (=0)
position 11 - u displacement (x-direction)
12 - v displacement (y-direction)
13 - w displacement (z-direction)

14 - 8  rotation

15 - B: rotation
21-30 PRESC(IVFIX,1) - The prescribed value of the nodal
31-40 g variables (u,v,v.s1 and 52
41-50 N respectively)
51-60 '

61-70 PRESC(IVFIX,5)
(1) PLASTOSHELL
CARD SET 7 MATERIAL CARDS Four Cards for each different

material (Total number of cards = 4*NMATS)
First card (IS5)
Cols. 1-3 NUMAT Material identification number
Second card (7F10.5)

Cols. 1-10 PROPS(NUMAT,1) E Young's modulus in 1 direction

1




Cols. 11-20 PROPS(NUMAT,2) v Poisson's ratio (v12/21=v21/tig
21-30 PROPS(NUMAT,3) t Layer thickness expressed in the
normalised ; coordinate
31-40 PROPS(NUMAT,4) » Material density
41-50 PROPS(NUMAT,S) a Coefficient of thermal expansion
51-60 PROPS(NUMAT,6) o© Uniaxial yield stress (1 direction)
61-70 PROPS(NUMAT,7) H' Hardening parameter (1 direction)
Third card (7F10.5)
Cols. 1-10 PROPS(NUMAT,8) E Young's modulus in 2-direction
11-20 PROPS(NUMAT,9) G , Shear modulus im 12 planme
21-30 PROPS(NUIAT,IO)G13 Shear modulus in 13 plane
31-40 PROPS(NU!AT,ll)st Shear modulus in 23 plane
41-50 PROPS(NUIAT,12)002 Uniaxial yield stress (2 direction)
51-60 PROPS(NUHAT,IS)UO3 Uniaxial yield stress (3 directiomn)
or oe Uniaxial yield stress (At 45° to
1 direction)

)
61-70 PROPS(NUIAT,14)10128hear yield stress (IE plane)

Fourth card (7F10.5)

Cols. 1-10 PROPS(NUMAT,15)t,. .Shear yield stress (13 plane)
11-20 PROPS(NUIAT,IG)Tozashelr yield stress (23 plane)
21-30 PROPS(NUMAT,17)8 Angle between the reference
system and the material system
in the layer plane (anticlock-
wise - in radians)
NOTE: The 1,2,3 axes are the principal material axes, with 1,2
being in the plane of the layer.

(ii) CONSHELL
CARD SET 7-A CONCRETE AND STEEL DISCRETIZATION PATTERN Two

Cards for each layer pattern

Pirst card (16135)

Cols. 1-5 NCLAY(ILAYR) Number of concrete layers
6-10 NSLAY(ILAYR) Number of steel layers (ILAYR - Layer
pattern identification number)

Second card (1615)

Cols. 1-5 MACON(ILAYR,ICONL)
ICONL - Material identification




number for each concrete laver f{ronm
bottom to top
MASTE (ILAYR,ISTEL)
ISTEL ~ Material identification
number for each steel layer
CARD SET 7-B MATERIAL CARDS - Three Cards for each different
material

First card (I5)

Cols. 1-5

Second card

NUMAT Material identification number

(7F10.5) FOR CONCRETE MATERIAL ONLY

Cols. 1-10 PROPS(NUMAT,1) EQ Young's Modulus
11-20 PROPS (NUMAT, 2) Poisson's ratio
21-30 PROPS(NUMAT,3) t. Layver thickness expressed in the
’ normalized ; coordinate
31-40 PROPS(NUMAT ,4) : Material density
41-50 PROPS(NUMAT,3) f’_ Concrete ultimate tensile stirength

51-6Q

61-70

Second card

Cols. 1-~10
11~20

PROPS (NUMAT,6)

PROPS (NUMAT, 7)

(7F10.5) ~ FOR

PROPS (NUMAT, 1)
PROPS (NUMAT, 2)

Concrete ultimate compression
strength
Concrete ultimate compressive

strain

STEEL MATERIAL ONLY

E
s

Young's Modulus

Elasto-plastic Young's Modulus

21-30 PROPS(NUMAT,3) t_ Layer thickness expressed in
’ terms of the normalized |
coordinate
31-40 PROPS(NUMAT,4) Material density
41-50 PROPS (NUMAT,S) f Steel yield stress
$1-80 PROPS (NUMAT,6) ;s Layer position in terms of the

61-70

PROPS (NUMAT , 7)

normalized ; coordinate

Angle between the reinforcement
and the x'-axis (measured anti-
clockwise in radians with

~/2 ¢ % < */2)




Third card (7F10.5) - FOR CONCRETE MATERIAL ONLY

Cols.

Third card

CARD SET 8

1~10 PROPS (NUMAT, 8) Em Tension stiffening parameter im

11-20 PROPS(NUMAT,9) 2 Tension stiffening parameter

First card (31I5)

Cols.

Second card

Cols.

1-5 NPRES

6-10 NUCLO

11-15 NBODY

1-5 KPRES

6-10 CFACE

11-25 PREVA

26-40 SURFA

(7F10.5)

- FOR STEEL MATERIAL ONLY

Blank card

LOAD CARDS At least one card for each element

Distributed load indicator

=0 no distributed loads on this element

=1 distributed loads to be input

Number of concentrated loads oa this
element (=0, no concentrated loads)

Body load indicator (gravity and/or centri-
fugal

=0 no body loads on this element

=1 body loads to be input

(I5,F5.1,2F15.5) [Only exists if NPRES=1]

Distributed load type indicator

=0 Uniformly distributed load

=1 Hydrostatic load

=2 Load specified as nodal values (See
Card Set 5)

= + 1.0 Pressure is on top surface

= ~ 1,0 Pressure is on bottom surface
Uniformly distributed load if KPRES = O
Maxipum value of hydrostatic load if
KPRES = 1

z coordinate of zero pregsure if KPRES =1

Third set cards (2I5,F10.5) (Only exists if NUCLQ > O]

Cols.

-t [ [ ———

Numer of cards to be input equals NUCLO

1-5 LPOIN

6~10 LDOFN

Local node number (in the range 1-8) at
which the load is applied

Nodal variable number corresponding to the
applied load

z] - x displacement

=2 - y displacement
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11-20 CARGA

for each

Cols. 1-10 FACTO

11-20 TOLER

21-25 MITER
26-30 NOUTP(1)

31-35 NOUTP(2)

=3 - z displacement

=4 - 51 rotation
=5 - 52 rotation
Concentrated load value

CARD SET 9 LOAD INCREMENT CONTROL CARDS (2F10.5,315) One Card

load increment (total of NINCS cards)

Applied load factor for the current

increment

Convergence tolerance factor

Maximum number of iterations allowed

Control output parameter of the unconverged

results after the first iteration

=1 - Print the displacements only

=2 - Print displacements and nodal
react:ons

=3 - Print displacements, reactions and
stresses

Control output parameter of the converged

results

=1 Print the final displacezents only

=2 Print displacements and nodal reactions

=3 Print displacements, reactions and

stresses.
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SR 23 36 H 3 363 2 T3 I S 336 3363 3 236 3230 A0 I I I W I TN NN
A PROGRAM FOR ANALYSIS OF SHELLS BY THE FINITE ELEMENT METHOD

THIS PROGRAM HS BEEN EXTRACTED FROM THE BOOK
FINITE ELEMENT PROGRAMMING FOR PLATES AND SHELLS
BY HINTON AND OWEN

SURESH N. JULY 1989

J6 333 36 34 36 36 34 33 553 36 3E 336 35 34 3636 30 3E 30 30 30 6 3 636 36 3636 3 3 36 36 36 36 I I 03030 36 36 36 33 3 36 3 I I3 36 30NN

SUBROUTINE ALGOR(FIXED, KITER, IITER, KRESL, MTOTV, NALCO,

NTOTY, KUNLGO, KINCS?
#3023 42 334 3 3 3 5 56 3533 3 FHIEIE I 33 3 I I3 6 SN IR
—————— THIS SUBROUTINE SETS EQUATION RESOLUTION INDEX. KRESL
3430303 363436 3435 358 3 30 30 30 3 33036 38 35 30 H 30 303033 34 36 3 J 20 305420303030 30 F 0T 2038 3 F I AR R
aéggrSIOS FIXED(MTOTV)

IF(NALGO. EQ. 1. AND. KITER. EQG. 2) KRESL = 1
IF(NALGO. EQ. 2) KRESL=1
IF(NALGOD. EG. 3. AND. IITER. EQ. 1) KRESL = 1
IF(NALGO. EG. 4. AND. KITER. EG. 2) KRESL = 1
IF(NALGO. EQ. 4. AND. IITER. EQ. 2) KRESL = 1
IF(NALGO. EQ 4. AND. KUNLO. GT. O0) KRESL = 1
IF(KITER. EG. (AINCS+1+1})) KRESL = 1
IF(IITER. EG. 1) RETURN
DO 100 ITOTV = 1,NTOTV
FIXED(ITOTV) = 0.0

CONTINUE
RETURN
END

————— " — i oy il e e T o o T —— ——— — — ——— o o

SUBROQUTINE BGMAT. FORMS THE (Bol MATRIX AND THE [G1l MATRIX

——— - A — - — —— = - " S G = —— — " m— f—— ———

SUBROUTINE BGMAT (COORD, DICOS, LNODS, MATNO, MELEM,
MLAYR, MMATS, MPOQIN, M3POI, NELEM,
NEVAB, NGAUS, NGAUZ, NLAYR, NNODE., NPROP,
POSGP, PROPS, THICK, WEIGP)

THIS SUBROUTINE COMPUTES BMATX AND GMATX (THE LATTER FOR LARGE
DISPLACEMENT ANALYSIS). THESE MATRICES ARE STORED ON TAPE 8 FOR
LATER SELECCTIVE INTEGRATION(TRANSVERSE SHEAR TERMS)CAN BE
ACCOUNTED FOR).

. —— 1 o iy A T . e A Sl e A S N D e

COMMON WORMX (3, 24}, GVALU, DJACB

DIMENSION BMATX (S, 4S5), BDUMY(8, 43), COORD(MPOIN, 8), DICOS(3, M3PCI},
FUNCT(4), GMATX (2, 43), LNODS (MELEM, 2), MATNO (MELEM, MLAYR),
POSGP(3), PROPS(MMATS, NPROP), THICK(MPOIN), SHAPE(3, 9),

WEIGP (3)
REWIND 8
LGAUS = NGAUS -NGAUZ
LGAUS = O FOR NORMAL OR REDUCED INTEGRATION RULE,
LGAUS = 1 FOR SELECTIVE INTEGRATION RULE

WRITE(S, #) "NELEM IN BGMAT=’, NELEM
DO 100 IELEM = 1, NELEM
WRITE (S, %)’ ‘
WRITE(S, #) 'IELEM=", IELEM
WRITE(S, #) ‘
IF(LGAUS. EG. 0) 6O TO 23
NBORP = O

REDUCED INTEGRATION IS USED TO SET UP THE TRANSVERSE SHEAR TERMS OF
THE (Bl MATRIX., FIRSTLY THESE TERMS ARE STORED IN BDUMY MATRIX

CONS1 = 1_0/POSGP (4)
CONS2 = -CONS1

ZETSP = 0.0

KGAUZ = -1

DO 20 IGAUZ =1, NGAUZ
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DO 20 JGAUZ = 1, NGAUZ
KGAUZ KGAUZ + 1
EXISP POSGP (3+1GAUZ)
ETASP POSGP (3+JGAUZ)
CaLL SFR1 (SHAPE, EXISP, ETASP)
cAaLL FUNC (BMATX, SHAPE, THICK, NBORP, NNODE, ZETSP, MELEM, COORD,
DICOS, LNODS, IELEM, MPOIN, M3POI, GMATX)
DO 15 IEVAB =1, NEVAB
DO 15 IPOSI = 1,2
JPOSI = 2#KGAUZI+IPOSI
BDUMY (JUPOSI, IEVAB) = GMATX(IPOSI, IEVAB)
CONTINUE

SET UP (Bl MATRIX, AND [G] MATRIX FOR NORMAL OR REDUCCED INTEGRATION

NBORP = 1
DO 350 IGAUE =1, NGAUS
D8 50 JGAUS =1, NGAUS
WRITE(S, #) "IGAUS. . . .. JGAUS. . . ‘, IGAUS, JGAUS
EXISP = POSGP (IGAUS)
ETASP = POSGP (JGAUS)
WRITE(Z0, %) 'POSGP"S IN BGMAT -
WRITE(20, #) PASGP (IGAUS), POSGP (JUGAUS)
CcalLL SFR1(SHAPE, EXISP, ETASP)
WRITE(20,%*) '"COMES OUT OF SHAPE IN BGMAT®
WRITE(20,777)((SHAPE(III, JJJ), JUJ=1,9), 111I=1, 3)
FORMAT (1X, 3F14. 7))
ZETSP = -1.0
DO 45 ILAYR = 1, NLAYR
LPROP = MATNO(IELEM, ILAYR)
DZETA = PROPS(LPROP, 3)
ZETSP = ZETSP+DIZIETA/2. 0
CALL FUNC(BMATX, SHAPE, THICK, NBORP, NNODE, ZETSP, MELEM,
COORD, DICOS, LNODS, IELEM, MPQIN, M3POIL, GMATX)
gztIJ gg ( 5‘ *) 2 % 86 R0 NE 00 29 48 SU 40 90 20 90 e F U N C ENDS Wt Nt s ' LGAUS
DVOLU = DJACB*WEIGP (IGAUS)®#WEIGP (JGAUS)#DZETA
IF(LGAUS. EQ. 0} GO Ta 40

SET UP THE INTERPOLATION FUNCTIONS TO REFORM THE SELECTIVE INTGN.

(1) = 0.25%#(1. O+CONS1I#EXISP)# (1. Q+CONS1#ETASP)
FUNCT(2) = 0. 25#(1. G+CONSI#EXISP)# (1. O+CONS2#ETASP)
FUNCT (3) = O. 25#(1. O+CONS2#EXISP)# (1. O+CONS1*ETASP)
FUNCT (4) = Q. 23#(1. O+CONS2%EXISP)# (1. O+CONS2*#ETASP)

INTERPOLATE THE TRANSVERSE SHEAR TERM OF BMATX FROM 4 TO 2 G.P
DO 30 IEVAB = 1, NEVAB
DO 30 IDOFN = 4,95
BMATX(IDDFN,IEVAB) = 0.0
DG 30 INTPO =1, 4
IGASH = 2#INTPO+IDOFN-5
BMATX(IDOFN, IEVAB) = BMATX(IDOFN, IEVAB)}+FUNCT(INTPQO)*
BDUMY ( IGASH, IEVAB)
CONTINUE

WRITE (8) BMATX., GMATX, DVOLU
ZETSP = ZETSP + DZETA/2.0
CONTINUE
CONTINUE

WRITING BGMAT FOR TEST ON UNIT 30
WRITE(30,%) 'IELEM =’, IELEM
WRITE(30,666) ((BMATX(I,J),J=1,43), I=1,3)
FORMAT(1X, SE14. 7/1X, SE14. 7/1X, 3E14. 7/1X. 3E14. 7/ 1 5E14 7
/1X,5E14. 7, /71X, SE14. 7, 71X, SE14. 7/1X, SE14
CONTINUE
RETURN
END

" . " s T - — - —
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SUBROUTINE CHECKI(NDOFN.NELEM:NGAUS:NNATS.NNODE NPQIN,
MMATS, NVFIX, NGAUZ, NLAYR)
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DIMENSION NEROR (20)
DO 10 IEROR = 1,4
NEROR(IEROR) = O

CREATE THE DIAGONSTIC MESSAGES

NPOIN. LE. O) NEROR(1) =1
ELEM*NNODE. LT. NPOIN) NEROR(2) = 1
VFEIX.LT. 2. OR. NVFIX. GT. NPOIN) NERDR(3)
.LT. 8. OR. NNODE. GT7. 9) NEROR(4) =1
DDFN.NE.?.DR.NLAYR.GT.10) NEROR(S) =1
2

L
[

. OR. NMATS. GT. MMATS}) NEROR(6&)
. . 2. 0OR. NGAUS. GT. 3) NEROR(7) =1
NGAUZ. LT. 2. OR. NGAUZ. GT. 3) NEROR(8) =1

EITHER RETURN, OR ELSE PRINT THE ERROR DIAGONISE

KEROR = O

DO 20 IERQOR = 1,8
IF(NEROR(IEROR}. EQ. 0) GO TO 20
KEROR = 1

]
=

WRITE (&, 700} IEROR

FORMAT (//31H, ###DIAGNOSIS BY CHECK1l, ERROR, I3}
FORMAT (23HDIAGNQOSIS BY CHECK1 ERROR, I3)
CONTINUE
IF(KEROR. EQ. 0) RETURN
OTHERWISE ECHO ALL THE REMAINING DATA WITHOUT FURTHER COMMENT

caLlL ECHO
END

SUBROUTINE CHECKZ2(COORD, IFFIX, LNODS, MATNG, MELEM, MFRON, MPOIN,
MTOTV, MVFIX, NDFRO, NDOFN, NELEM, NMATS, NNODE, NOFIX,
NPOIN: NVFIX, NLAYR)

——— . et o e e T S o S S oy T P S T T AR e S S dnl? Syt S S
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DIMENSION COORD(MPOIN, 8}, IFFIX(MTATV), LNODS(MELEM, 12),

MATNO (MELEM, NLAYR ), NDFRO(MELEM), NEROR(20), NOFIX(MVFIX)

CHECK AGAINST TWO IDENTICAL NONZERO NODAL DISPLACEMENTS
DO 5 IEROR = 9,20 '

NEROR(IEROR) = O
DO 10 IELEM = 1, NELEM
NDFROCIELEM) = O

DG 5O IPOQIN = 2, NPOIN
KPOIN = IPOIN-1
DO 30 JPOIN =1, KPOIN
DO 20 IDIME=1,3
IFéggg?D(éPOIN,IDINE) NE. COORD(JPOIN, IDIME)) GO TO 30
NEROR (9) = NEROR(9)+1
CONTIN
CONTIN

CHECK THE LIST OF ELEMENT PROPERTY NUMBERS

DO 30 IELEM =1, NELEM
DO SO ILAYR =1, NLAYR
IF(MATNO(IELEM, ILAYR). GT. NMATS) NEROR(10) = NEROR(10)+1

CHECK FOR IMPOSSIBLE NODE NUMBERS

DO 70 IELEM =1, NELEM
DO 60 INODE = 1, NNODE
IF(LNODS(IELEH.INDDE) €a. ) NERDR(II) = NEROR(11) +
IF (LNODS(IELEM, INCDE). LT. 0. OR. LNGDS( IELEM, INODE). GT NPOIN)
MEROR(12) = NERDR(12) + 1
CONTINUVE

CHECK FOR ANY REPETITION OF A NODE NUMBER WITHIN AN ELEMENT
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DO 140 IFCIN = 1, NPOIN

KSTAR = O
DO 100 IELEM =1, NELEM
KZEROQ = O

DO 90 INODRE =1, NNODE
IF(LNODS(IELEM, INODE). NE. IPOIN) GO TO 90
KZERO = KZIERO + 1

IF(KZERO. GT. 1} NEROR(13) = NEROR(13) +1

SEEK FIRST, LAST AND INTERMEDIATE APPEARANCES OF NODE IPOIN

IF(KSTAR. NE. O3 GO TO 80
KSTAR = IELEM

Page 4

CALCULATE INCREASE OR DECREASE IN FRONTWIDTH AT EACH ELEMENT STAGE

NDFRO(IELEM) = NDFRD(IELEM) + NDOFN
CONTINUE

AND CHANGE THE SIGN OF THE LAST APPEARANCE OF EACH NODE

KLAST = IELEM
NLAST = INODE

CONTINUE
CONTINUE
IF(KETAR. EQ. O} GO TO 110
IF(KLAST. LT NELEM) NDFRO(KLAST+1) = NDFRO(KLAST+1) - NDOFN
LNODS (KLAST, NLAST! = —IPOIN
GO TO 140

CHECK THAT CO-ORDINATES FOR AN UNUSED NODE HAVE NOT BEEN SPECIFIED

WRITE(L,R00) IPOIN
FORMAT (/13HCHECK WHY NODE, 14, 14H NEVER APPEARS)
FORMAT (/14HCHECK WHY NQODE, I4, 14H NEVER APPEARS)

NEROR (14) = NEROR(14) +1
SIGMA = 0.0
DO 120 .DIME = 1,3
SIGMA = SIGMA + ABS(COORD(IPOIN, IDIME))
IF(SIGMA. NE. 0. 0) NEROR(135) = NEROR(13) +1

CHECK THAT AN UNUSED NODE NUMBER IS NOT A RESTRAINED NODE

DO 130 IVFIX =1,NVFIX

IF (NOFIX(IVFIX). EQ. IPOIN) NEROR(1&6) = NEROR(16) +1
CONTINUVE
CALCULATE THE LARGEST FRONTWIDTH'
NFRON = O
KFRON = O

DO 150 IELEM = 1, NELEM
NFRON = NFRON + NDFRO(IELEM)
IF (NFRON. GT. KFRON; KFRON = NFRON
WRITE (6, 205) KFRON
FORMAT(//33H MAXIMUM FRONTWIDTH ENCOUNTERED =, 13//)
IF(KFRON. GT. MFRON) NEROR(17) =1

CONT INUE CHECKIMNG DATA FOR THE FIXED VALUES

DO 170 IVFIX = 1, NVFIX

IF(NOFIX(IVWIX). LE. 0. OR. NOFIX(IVFIX). GT. NPOIN)NEROR(18)
=NEROR(18)+1

KOUNT

= Q
NLOCA = (NOFIX(IVFIX)—1)#NDOFN
DO 160 IDOFN = 1, NDOFN
NLOCA = NLOCA +1
IF CIFFIX(NLOCA). GT. O) KOUNT =1
IF(KOUNT. EQ. O) NEROR(19) = NEROR(19) +1
KVFIX = IVFIX -1
DO 170 JVFIX = 1,KVFIX
IF(CIVFIX.NE. 1). AND. (NOFIX(IVIFIX). EQG. NOFIX(JVFIX}))
NEROR(QO) = NEROR(20) + 1
KEROR =
DO 180 IERUR = 9,20 .

8)+1
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&EégERDR(IERDR).EQ.O) GO TO 180

WRITE (6,910 IEROR, NERDR (IEROR)

FORMAT(//2SHDIAGNOSIS BY CHECKZ ERROR, I3, &X, PHASSTD NO., I3)
CONTINUE

IF(KERDOR. NE. O) GO TO 200

RETURN ALL NODAL CONNECTION NUMBERS TO POSITIVE VALUES

DO 190 IELEM = 1, NELEM
DO 120 INODE = 1, NNODE

=y

LNODS(IELEM, INODE} = IABS(LNODS(IELEM, INODE))
RETURN

caLt ECHO
END

SUBROUTINE CONVER
SUBROUTINE CONVER (ELDBAD, I1ITER, LNODS, MELEM, MEVAB, MTOTV, NCHEK,
NDOFN, NELEM, NEVAB: NNODE, NTOTV, STFOR,
TLOAD, TOFOR, TOLER)
THIS SUBROUTINE CHECKS FOR CONVERGENCE OF THE ITERATION PROCRESS

DIMENSION ELOAD(MELEM, MEVAB), LNODS(MELEM, 12), STFOR(MTOTV),
TOFOR (MTOTV), TLOAD (MELEM, MEVAB)

NCHEK = O

RESID = 0.0
RETOT = 0.0
REMAX = 0.0

DO 5 ITOTV = 1, NTOTV

STFOR(ITOTV) = 0.0
TOFQR(ITOTV) = 0.0
CONT INUE

DO 40 IELEM =1, NELEM
KEVAB = O

DO 40 INODE = 1, NNODE

LOCNO = IABS(LNODS(IELEM, INODE))
DO 40 IDOFN =1, NDOFN

KEVAE = KEVAB + 1

NPOSI = (LOCNO-1)+#NDOFN+IDOFN
STFOR (NPOSI} = STFOR(NPOSI) + ELOAD(IELEM, KEVAB)
TOFOR(NPOSI) = TOFOR(NPOSI) + TLOADC(IELEM, KEVAB?}

DO 50 ITOTV =1, NTOTV
REFOR = TOFDR(ITOTY) —-STFORCITAOTV)
RESID = RESID + REFOR#*REFOR
RETOT = RETOT + TOFOR(ITOTV) #TOFOR(ITOTV)
AGASH =ABRS(REFOR)
IF( AGASH. GT. REMAX) REMAX = AGASH
DO 10 IELEM = 1, NELEM
DO 10 IEVAER = 1, NEVAB

ELOAD(IELEM, IEVAB) = TLOAD(IELEM, IEVAB) —-ELDAD(IELEM, IEVAB)
RESID = SQRT(RESID)
RETOT = SGRT(RETOT)
RATIO = 100. O*RESID/RETOT
IF(RATIO. GT. TOLER) NCHEK =1
IF(IITER. EQ 1) GO TO 20
IF(RATIO. GT. PVALU) NCHEK = 999
PVALU = RATIQ
WRITE (&6, 30) NCHEK, RATIO, REMAX
FORMA T (1H0, 3X, 17HCONVERGENCE CDDE=,I4.3X;29HNDRM OF RESIDUAL SUM M
RATIO =,E14. 6.,3X, 18BHMAXIMUM RESIDUAL =, E1l4
SEBURN

SUBROUTINE DIMEN(MBUFA, MELEM, MEVAB, MFRON, MMATS, MPOIN, MSTIF, MTOTG,
MTOTV, MVFIX. NDOFN. NPROP . NSTRE, M3PQI, MLAYR)

- - — > s T G . i T S P S . T T S —— ———— D T o

IS SUBROUTINE PRESETS VARIABLES ASSOCIATED WITH DYNAMIC
MENSIONING
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MMATS = S
MPOQIN = 100
M3PDI = 3#MPOIN
NDOFN = S
NSTRE = 5
MEVAB =NDOFN%*%?
MSTIF = (MFRON+1)#MFRON/2
MTOTG = MELEM*MLAYR#9
MTOTY = MPOIN#NDOFN
MVFIX =36
NPROP =17

NRITE(S,*)’SDME DATA IN DIMENSION-
WRITE(S, #)MFRON, MLAYR, MMATS, MPOIN, M3POI. NDOFN, NSTRE, MEVAB;,
RETURNMSTIF.MTOTG.MVFIX

—— o —— . s T o — o T et s e s - o — P

SUBROUTINE ECHO
SUBROUTINE ECHO

IF DATA ERRORS HAVE oEEN DETECTED BY SUBROUTINES CHECK1 OR
CHECK2, THIS ROUTINE READS AND WRITES THE REMAINING DATA CARDS

DIMENSIUN NTITL(80)
WRITE (&, 2003
FORMAT(//5CH NOW FOLLOWS A LISTING OF POST-DISASTER DATA CARDS)
READ(15, 903 NTITL
FORNAT(SOAI)
WRITE (&, 910) NTITL
FORMAT (20X, 80A1)
GO TO 10
END
SUBROUTINE FLOWS(ABETA, AVECT, DVECT, LPROP, MMATS, NPROP, PROPS,
G. A, DMATT)
THIS SUBROUTINE CALCULATES THE FLOW VECTOR -AVECT~ AND COMPUTES
-DVECT~ AND -ABET
DIMENSION AVECT(35), DMATT(3, 5, MMATS), DVECT (S},
PROPS(MMATS, NPROP), SG(3), A(2, MMATS)

SET UP MATERIAL PROPERTIES
HARDE = PROPS(LPROP, 7)
COMPUTES THE VECTOR AVECT
L = LPROP

AFUNC = (A(1, 1)#SG(1)+2. O#A(2, LI #SG (11456 (2)1+2. O#A(T, LI*
SG(1)1#SG(3I+A(4, L) #SG(2)#8G(2)+2. O*A(S, L)»SG(2)#56(3
AL, L) #SG(3)#5G(3)+A(7, L)I#SG(4)#5G(4)+2. O#A(8, L) *S6 *
SG(3)+A(F, L)#SG(5)#8G(S5) y##0. 3
AVECT (13 = (A(1,L)#SG(1)+A(2, L)#SG(2)}+A(3, L) #5G(3))/AFUNC
AVECT (2) = (A(2,L)#5G(1)+A(4, L) #SG(2)+A(3, LI*#SG(3))/AFUNC
AVECT (3) = (A(3, L)#SG(1)+A(S5, L) #SG(2)+A(6, LI*SG(3))/AFUNC
AVECT (4) = (A(7,L)#SG(4)+A(8B, L)*#SG(S5)) /AFUNC
AVECT (31 = (A(8, 1)1#5G(4)+A(9, L)I#SG(3))/AFUNC
WRITE (&, R10)AVECT
FORMAT(BH AVECT =, SE13. &)
COMPUTE DVECT = DMATX#AVECT
Do 10 I = 1,5
DVECT (1) = 0.0
pg 10 J =1,5
DVECT(I) = DVECT(I} + DMATT(I, J, LPROP)#AVECT (J)
NRITE(6,920 DVECT
FORMAT(BM DVECT =, SE135. 6)

DENOM = HARDS
PO 20 ISTRE =1,95
DENOM = DENOM + AVECT(ISTRE)®#DVECT(ISTRE)
ABETA = 1.Q/DENOM
WRITE(&, ?30) ABETA
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"930 FORMAT(8H ABETA =, E15. &)
URN
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SUBROUTINE FRAME (N1, N2, N3, NOPN)

B} B34 3 35330 34 330 T3 S SEH T30 3 T30 3 T3 3 36 3 3630 3 3036 36 36 3 S0 620 3 3 30 382 602NN
MULTIPLE VECTOR AND/OR MATRIX MANIPULATIONS

NOPM = 1, CREATE UNIQUE ORTHOGONAL AXES IN MATRIX N1 INCLUDING VEC
NOPN = 2, SCISSORS ON QTHER TWO VECTORS IN Ni, THEN N2 MADE ORTHO

NOPHN = 3, BEST ORTHOGONAL APPROXIMATION TO GIVEN NON-CARTESIAN FRA
NOPN = 4, N2 BECOMES NI1T#N2x*N1 USING N3 = GASH

f NOPN = 35, N2 BECOMES NI#NZ#¥NIT USING N3 = GASH

b B3I S AT I IS A W T T AE I 303 T I I I F I I I NN
COMMON WORMX (3, 24, GVALU, DJACOB

X WRITE(S, #) "ENTERING FRAME WITH N1, N2, N3, NOPN AS‘

- WRITE(S, #) N1, N2, N3, NOPN

M3 = N1 +2
I2 = N2 ~1
p WRITE(S, #) ‘M3, I2 IN FRAME. . . .. ‘1 M3, I2
IF(I2. GE. N1} GO TQ 138
I2 = I2 +3
i It = N1 + f1+N1 + 3 -N2 -1I2
: WRITE(S, #) 'SINCE I2. . GE. N1, I1=",1I1,N1,N2,1I2
GO 7O (1.2.3,4,5 3, NOPN
i WORMX (1, I1) = WORMX{(3, N2}
z WRITE(S, #) "-=—=—=—=-=11",I1
WORMX (2, I1) = 0.0
WORMX (3, I1) = —WORMX (1, N2)
IF(WORMX (1,11 EG. 0. O. AND. WORMX (3, I1}. EQ. 0. Q2
WORMX (1., I1) = —WORMX(2,N2)
CALL VECY (N2,1I1,12,4)
GO 70 14
2 CALL MATM(I1l, 12,0.7)
CALL VECT (I1,12,N2, 4)
DI WRITE(S,#)'CaLL..... . ... ING MATM
L CALL MATHM (N1.N1,0,6)
RETURN
3 I1 = N1 +1
I2 =M3

DO 11 N =NH1,M3
CALL MATM(I1, I2. 0. 7)

I1=12
I2=N
RETURN
} CALL MATM(N1, N2, N3, 2)
NLPN =3
CALL MATMING, N1, N2, NLLPN)
RETURN
3 CALL MATMIN1, N2, N2, 3)

CALL SINGOP(N3, 3)
CALL MATM(NL, N3, N2, 3)
RETURN
END
> SUBROUTINE FRONT
; SUBROUTINE FRONT(ASDIS, ELOAD. EQRHS, EQUAT, ESTIF, FIXED,
‘ ) GLOAD, GSTIF, IFFIX, IINCS:, IITER, KRESL,
. LOCEL, LNODS, MBUF A, MELEM, MEVAB, MFRON,
MSTIF, MTOTV, MVFIX, NACVA, NAMEV, NDEST,
NDOF N, NELEM: NEVAB, NNODE: NOF I X, NPIVO,
NPOIN, NTOTV, TDISP, TLOAD, TREAC, VECRV)
T 3338 3 S 3 3 T 3E 3 3E 3 20 6 3 463 I 0 I JE L0 I SE I I NI I I T T
THIS SUBROUTINE UNDERTAKES EQUATION SOLUTION BY THE
FRONTAL METHOD.
3430742 31363 3 3 030 38 31 36 3 05336 36 38 30 36 3030 3 I3 3 E 630 31 I I 0TI I I I I T 2N

DIMENSION ASDIS(MTOTV). ELOAD(MELEM, MEVAB), EGRHS (MBUFA),
EQUAT (MFRON, MBUFA), ESTIF (MEVAB: MEVAB), FIXED(MTOTV),
GLOAD(MFRON), GETIF(MSTIF), IFFIX(MTATV),
LNODS (MELEM, 93}, LOCEL (MEVAB), NACVA(MFRON), NAMEV (MBUFA),
NDEST (MEVAB), NOFIX(MVFIX), NPIVO(MBUFA), TDISP(MTOTV),
TLOAD(MELEM, MEVAB), TREAC (MVFIX, NDOFN), VECRV(MFRON)

FEAV NS

Vit
csgs SHE uws




B . PR

NFUNC (I, J) = (JwJ-J)/2+1

WRITE (50, #) "VALUE OF KRESL, AT BEGINING ', KRESL

WRITE (50, #)"VALUE OF NDOFN, NPOIN IN BEGIN OF FRONT‘, NDOFN, NPOIN
WRITE(SQ, =) "VALUE OF NTOTYV AT BEGINIG OF FRONT‘, NTOTV
I1IRSL = KRESL
WRITE(S, #) "VALUE OF IIRSL AT BEGINING’, IIRSL
WRITE(S0, %) ‘VALUE OF NELEM, NEVAB ', NELEM. NEVAB
WRITE(SO, %) '"VALUE OF ELOAD IN FRONT BEGINING'
WRITE (S0, #) ( (ELOAD(I, J), J=1, NEVAB), I=1, NELEM)

CHANGE THE SIGN OF THE LAST APPEARANCE OF EACH NODE
WRITE (S, ) 'CHANGE THE SIGN OF THE LAST APPEARANCE OF EACH NOPE’
IF(IINCS. GT. 1. 0R. IITER. GT. 1) GO TO 455
DO 140 IPOIN = 1, NPOIN
KLAST = ©
DO 130 IELEM = 1, NELEM
DO 120 INDIE = 1, NNODE
IF(LNODS(IELEM, INODE). NE. IPOIN) GO TO 120
KLAST = IELEM
NLAST = INCDE

CONTINUE
CONTINUE
IF(KLAST. NE. O) LNODS(KLAST, NLAST) = —IPOIN
CONTINUE
CONTINUVE

START BY INITIALIZING EVERYTHING THAT MATTERS TO ZERQ

WRITE (S, %3 'START BY INITIALIZING EVERYTHING THAT MATTERS TO ZERO’
WRITE(S, #) "#*2MBUFA, MSTIF, KRESL### ', MBUFA, MSTIF, KRESL, IIRSL
DO 145 IBUFA =1, MBUFA
EQRHS(IBUFA) = 0.0
KKRSL. = KRESL
WRITE(S, #) ‘KRESL, I IRSL, KKRSL, AFTER EGRHS = 0. 0, IIRSL, KRESL, KKRSL
DO 150 ISTIF ~1,MSTIF
STIF(ISTIF! = Q. 0
NRITE(S.*”****AC ER GESTIF = Q. O#%¥#sptitsts’

DO 160 IFRON = 1, MFRON
GLOAD (IFRONY = 0 O
VECRV (IFRON} = O )

NACVA (IFRON)
DO 16C IBUFA =1 MBUFA
EQUAT (IFRON, IBUFA} = QO O
WRITE(S, # "IIRSL, KKRSL, KRESL AFTER 160 CON’, I IRSL, KKRSL, KRESL

AND PREPARE FOR DISC READING AND WRITING OPERATIONS

ﬁgé;i(ﬁ.i)‘AND PREPARE FOR DISC READING AND WRITING OPERATIONS
=

WRITE (5, #) '"VALUES OF KRESL AFTER DISC... “,KRESL , IIRSL, KKRSL
IF(KRESL. GT. 1} NBUFA = MBUFA
REWIND 1
REWIMD 2
REWIND 4
REWIND 7
WRITE(S, #) "AFTER RWINDING II, KK, KR, IIRSL.: KKRSL, KRESL
ENTER MAIN ELEMENT ASSEMBLY-REDUCTION LOOQP
WRITE(S, #) "ENTER MAIN ELEMENT ASSEMBLY-REDUCTION LOOP’
NFRON = O
KELVA = O
IIRSL = KREESL
WRITE (S, #) "+++++VALUE OF IIRSL, KRESL+++++ ', IIRSL, KRESL
DO 320 IELEMM =1, NELEM
WRITE(S, #) "TELEM, I IRSL 7, IELEM, IIRSL
WRITE(2S,+) "IELEM, IIRSL ", IELEM, IIRSL
IF(IIRSL. GT. 1) GO TO 400
KEVAB = O
READ( 1) ESTIF
DO 170 INODE = 1, NNODE
DO 170 IDOFN =1, NDOFN

NPOSI = (INODE-1)*NDOFN=+IDOFN

LOCNO = LNOCS(IELEM, INODE)

IF(LOCNO. GT. 0} LOCEL(NPOSI) = (LOCNO-1)#NDOFN+IDOFN
IF(LOCNO. L.T. 0) LOCEL(NPOSI) = (LOCNO+1)#NDOFN-IDOFN
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CONTINUE
START AT LOKKING FOR EXISTING DESTINATIONS

WRITE(S, #) ‘START BY LOOKING FOR EXISTING DESTINATIONS
DC 210 IEVAD =1.NEVAB

&é??g = éABS(LDCEL(IEVAB))

WRITE (25, #} 'NIKNG AT AFTER KEXIS —0.0',NIKND,IABS(LDCEL(IEVAB))
RITE(S, #) ‘NFRONM=, ‘', NFRO

DC 180 IFRON =1, NFRON

WRITE (25, #) " IFRON, NIKNO, NACVA IN 180, IFRON, NIKNQ, NACVA(IFRON)

IF(NIKNC. NE. NACVACIFRON}) GO TO 180

KEVAE = KEVAD + 1

KEXIS = 1

NDEST (KEVAE}) = IFRONM
CONTINUE

IF(KEXIS NE 0 GO TO 210
WE NOW SEEX NEW EMPTY PLACES FOR DESTINATION VECTOR

DO 120 IFRON =1, MFRON
WRITE(23, #) ‘NACVA AT 190 FIRST ', NACVA(IFRON)

IF{NACVAJIFRON: NE. Q) GO TO 190
NACVA(IFRDN) = NIKNO

WRITE(Z2S, #) "NACVA, NIKNO IN 190 SECOND’, NACVA(IFRON}, NIKNO
KEVAD = KEVAB+1
NDEST (KEVAB) = IFRON
GO T 200

CONTINUE

THE NEW PLACES MAY DEMAND AN INCREASE IN CURRENT FRONTWIDTH

ég(#?ESg(KEVAB).GT.NFRDN) NFRON = NDEST(KEVAB)
NTINU
WRITE(S, #Y 'COMES OQUT QF, WE NOW SEEK EMPTY PLACES. .... ‘
WRITE(7) LOCEL, NDEST, NACVA, NFRON
WRITE(S, #)WRITES ON TO UNIT 77
WRITE (S, #} LOCEL, NDEST, NACVA, NFRON
GO TO 400
IF(IIRSL. GT. 1} READ(7) LOCEL, NDEST, NACVA, NFRON

WRITE(S, #) 'START ASSEMBLING ELEMENT LOADS -

ASSEMBLE B._EMENT L OADS

WRITE(S, #) "ELEMENT STIFFNESSES BUT NOT IN RESOLUTION-
WRITE (S, #) "ELEMENT NO. =7, IELE

WRITE(Z20, %) '"ELEMENT NO. ='-IELE
WRITE(S, #) ((ESTIF(IF, JF), JF=IF, IF}, IF=1, 43)
WRITE(45, %) ‘ELEMENT NO. =, IELEM

DO 220 IEVAB =1, NEVAB
IDEST = NDEST(IEVAB)
GLOAD (IDEST) = GLOAD(IDEST) + ELOAD(IELEM, IEVAB)
WRITE (350, %) "NEVAB, IEVAB, IDEST, GLOAD, ELOAD *
WRITE (30, # )INEVAB, IEVAB, IDEST, GLOAD(IDEST), ELOAD(IELEM: IEVAB)

ASSEMBLE THE ELEMENT STIFFNESSES BUT NOT IN RESOLUTION

IF(IIRSL. GT. 1) GO TO 402

DO 222 JEVAB =1, IEVAB
WRITE(45, %) ‘NEVAB, IEVAB, JEVAB, NDEST ( IEVAB), NDEST(JEVAB)
WRITE(45, #)NEVAB, IEVAB, JEVAB, NDEST(IEVAB ), NDEST (JEVAB)

JDEST = NDEST(JEVAB)
NGASH = NFUNC(IDEST, JDEST)
NGISH = NFUNC(JDEST. IDEST)

IF(JDEST. GE. IDEST)GSTIF (NGASH)=GSTIF (NGASH)+ESTIF (1EVAB, JEVAB)

B)
IF(JDEST. LT. IDEST)GSTIF(NGISH)=GSTIF (NGISH)+ESTIF ( IEVAB, JEVAB) B}

WRITE (45, #) "VALUEQF NGASH. NGISH, GSTIF, IDEST. JDEST, ESTIF, VBS '
WRITE (45, #INGASH, NGISH, GSTIF (NGASH), GSTIF(NGISH):IDEST.JDEST-
ESTIF (IEVAB, JEVAB), IEVAB, JEVAB
CONTINUE
CONTINUE
CONTINUE

RE-EXAMINE EACH ELEMENT NODE. TO ENQUIRE WHICH CAN BE ELIMINATED
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WRITE(S, #) RE EXAMINE ELEMENT NODE. ... ...... !

WRITE(S, *) ' . ... . IIRSL, KRESL. . ... .. ‘ IIRSL, KRESL

WRITE(S, #) "VLAUE OF NEVAB ="', NEVAB

WRITE(SO,#) 'ELEMENT NO. =’, IELEM

WRITE(SC, #) "VALUE OF GSTIF(40&) INITIAL Y, GSTIF(406)
DO 310 IEVAB = 1, NEVAB

WRITE(S, *) 'VALUE OF IEVAB AT 210, IEVAB

NIKNO = -LOCEL(IEVAB:}
WRITE(S, #) ‘NIKMO= AT 310, NIKNO
IF(NIKNGO. LE. O) GO TO 310

FIND POSITIONS OF VARIABLES READY FOR ELEIMINATION

WRITE(S, #) ‘NFRON’, NFRON
DO 300 IFRON =1, NFRON
WRITE(S, #) "++++++++++++IFRON =++++++++ ", IFRON
WRITE(S, #) "VALUE OF HNACVACIFRON), NIKNDO ‘, NACVA(IFRON), NIKNO
IF(NACVA(IFRON) . NE. NIKNO) GO TO 300
NBUFA = NBL¥FA + 1
WRITE(SQ, %) "IRFON=", IFRON, "NBUFA="‘, NBUFA

WRITE EQUATIONS TO DISC OR TO TAPE

WRITE(S, #} "HRITE EGUATIONS TO DISC OR TO TAPE~’

WRITE(S, #) 'NBUFA, MBUFA ‘, NBUFA, MBUFA
IF(NBUFA. LE MBUFA) GO TO 406
NEUFA = .1

WRITE (S, #; ‘VALUE OF NBUFA IF NBUFA GT MBUFA‘, NBUFA, IIRSL
IFCIIRSL.GT. 1) GO TO 408
WRITE (2) EGQUAT, EGRHS, NP IVO, NAMEV
GO TO 4GC6

WRITE(4! EGRHS

READ(2) EGUAT, EGRHS, NP IVG, NAMEY

CONTINUVE

EXTRACT THE CO-EFFICIENTS OF THE NEW EQUATION FOR ELEIMINATION
WRITE(S, #} "EXTRACT THE CO-EFFICIENTS OF THE NEW EQUATION'

WRITE(S, #) "++++VALUE OF KRESL+++‘, IIRSL, KRESL
IF(IIRSL. GT. 1 GO TO 404
IF(ARESL. GT. 1) &GO TO 404

WRITE(S, #) . ... . MFRON="', MFRON, IFRON
WRITE(30, =) 'VALUE OF GSTIF(40&) AFTER 40& CONT‘, GSTIF(406)
0O 230 JFRON =1, MFRON

IFCIFRGH LT JFRON) NLOCA = NFUNC (IFRGN, JFRON)
IF(IFRON GE. JFRDN) NLOCA = NFUNC(JFRON, IFRON)
EGUAT (JFRON, NBUFA) = GSTIF(NLOCA)
GSTIF(NLOCA! = 0.0
CONT INUE

AND EXTRACT THE CORRESPONDING RIGHT HAND SIDES
WRITE(S, #} "EXTRACT CORRESPONDING RHS’

EGRHE (NBUF A} GLOAD(IFRON)
GLCAD ( IFROMN3 . 0

KELVA = KELVA +1

NAMEY (HBUFA) NIKNG

NP IVO (NBUFA) IFRON

DEAL WITH PIVOT

WRITE(S, ) 'NOW START DEALING WITH PIVOT’
WRITE (S, #) "EQUAT (IFRON, NBUFA), IFRON, NBUFA'’, EQUAT ( IFRON, NBUFA),
IFRON, NBLFA
EQGUAT(2.3) = 1.0
PIVOT = EQUAT(IFRON, NBUFA)
WRITE(3S0Q,%) "IFRON, NBUFA, PIVOT"
WRITE(ZC,#*) IFRONM, NBUFA, PIVOT
WRITE(S, #) ‘NIKNO, PIVOT ', NIKNO, PIVOT
IF(PIVOT. GT. 0) GO TO 235
WRITE (&, 200) NIKNG, PIVOT
FORMAT (1HO, 3X, SIHNEGATIVE OR ZEROQ PIVOT ENCOUNTERED FOR VARIABLE LE N
0.,14,10H OF VALUE ,E17. 6)

i

TINUVE
EQUAT (IFRON, NBUFA) = 0.0
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[Ty
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ENGQU IRE WHETHER FRESENT VARIABLE IS FREE OR PRESCRIBED
IFCIFFIX(NIANOY EG. O} GO TO 250
DEAL WITH A PRESCRIBED DEFLECTION

DO 240 JFRON =1, NFRON
co $BDSD(JFRDN) = GLOAD(JFRON) ~FIXED(NIKND)#EGUAT (JFRON, NBUFA)
220

ELIMINATE A& FREE VARIABLE - DEAL WITH THE RIGHT HAND SIDE FIRST

DO 27C FRONM = 1, MNFROM
GLOAD (JFRON} = GLOALD(JFRON) -EQUAT (JFRON, NBUFA)#EQRHS (NBUFA) /PIVAT

NOW DEAL ®WiTH THE CO-EFFICIENTS IN CORE

IFCIIRSL. GT 1 GO 7O 418
IF(EQUAT ( JFRON, NBUFA)Y . EG. C. 0y GO TO 270
NLOCA = NFUC (O, JFRON?

CUREG = EGAT(JFRON, NBUFA)

DO 260 LFRON = 1, JFRON

NGASH = FEON+NLOCA

gST$F€NGéSH) = GSTIF(NGASH) —-CUREQ®EGQUAT (LFRON, NBUFA) /PIVDT
ONT INUE

CONTINUE

EQUAT{ IFRON, NEUFAY = PIVOTY

RECORD THE NEN YACANT SPACE, AND REDUCE FRONTWIDTH IF POSSIBLE

NACVA (IFRONI= O
GO T0 270

COMPLETE THE ELEMENT LOCP IN THE FORWARD ELIMINATION

CONT INUE

IF (NACVA(NFRONY NE. 0) GO TO 310
NFRON = NEBDH -1
IF(NFRON GT O) GO TO 290

CONT INMNWE
COMTIMNUE
EQUAT(Z. 2 = 1 G
IF(IIRSL £G 1) WRITE(2) EQUAT, EQRHS, NP IV, NAMEYV

BACKEFACE 2

WRITE(S, ) "ENTERE BACK-GUBSTITUTION PHASE. ... '
ENTER BACK-SUBSTITUTION PHASE, LOOP BACKWARDS THROUGH VARIABLES

WRITE(SO, +) "KELNVA=, KELVA, NBUFA
DO 340 IELVA =1, KELYVA

READ A NEW BLOCK OF EQUATIONS — IF NEEDED

IF(NBUFA NE 0O} GO TO 412
BACKEFACE Z
READ (2! EQUAT, EGRHS, NP IVO, NAMEV
BACKSFACE 2
NBUFA = MBUFA
IF(IIRSL.FQ 1) GO 7O 412
BACKEPACE 4

READ 4, EGRHE

BACKEPACE 4

CONTINUE

PREPARE T( BACA-SUBSTITUTE FROM THE CURRENT EGUAITON

IFRON = NPIVO(NBUFA)

NIKNG = NAMEV(NBUFA)

PIVOTY ? EQUAT ( IFRON, NBUFA)
I
€

IFCIFFIX(NIAND) NE. 0) VECRV(IFRON) = FIXED(NIKNO)
IFCIFFIX(NIKNG, EQ. 0) EQUAT(IFRON, NBUFA) = 0.0
WRITE(SO, %) "IFRGN, NIKNG, PIVOT, VECRV(IFRON), FIXED(NIKNOQ) ¢
WRITE (S0, #)IFRON, NIWNG, PIVOT, VECRV(IFRON), FIXED(NIKNO)
BACK~SUBSTITUTE IN THE CURRENT EGUATION -
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DO 330 JFRION = 1, MFRON
EQRHTINEUFAY = EGRHS(NEUFA)-VECRYV (JFRON)#EGUAT (JFRON, NBUFA)

PUT THE FINAL VALUES WHERE THEY BELONG
IF(IFFIX(NIKNG)Y . EG. O VECRVIIFRON) = EGQGRHS(NBUFA)/PIVOT

IFCIFFIX{NIKNG! MNE. §) FIXED(NIKNG) = —-EQRHS(NBUFA)
NEBUFA = NBUFa -1
ASDIS (MIKNG) = VECRVIIFROMN)
CONTINUE
WRITE(S, #) 7ADD DIGPLACEMENTS. . ... ... ... !

ADD DISFLACEMENTS TO FREVIOQUS TOTAL VALUES
WRITE(SOQ, %) ‘NTQTV=', NTOTY

B0 345 ITOTY = 1, NTOTV

TDICSRUITOTV! = TDISPIITOTVI+ASDIS(ITOTYV)

WRITE(SO. =+ "NTCTY, TDISP, ASBIS
NRITE(SG.*'NTDTV,(TDIbP({TD).ITD=1:NTDTV)
WRITE(SO, %, (ASRIS(ITA, ITA=1, NTOTV)
STORE REACTIONS FOR PRI JTING LATER
KBOUN = 1

DO 370 IPOIN =1,NPOIN
NLOCA = {IPOIN-1sNDOFN
DC 350 IDOFN =1, NDOFN
NGUSH = NLOCA+IDOFN
IFCIEFIN CMGUSH!  GT G GO TO 360
CONTIMNUE
GO TQ 378
DO S1C IDOFN =1, NDOFHN
NGASH = NLOCA + ILDOFN
TREAC{KEOUN: IDJFN} = TREAC (KEQUN, IDOFN) + FIXED(NGASH)
WRITE(S, #) " IDOFH, LECQUN, TREAC (KBOUN, IDOFN, FIXED, NGASH ‘
WRITE (S, +) IDOFN, “3OUN, TREAC (KBOUN, IDOFN), NGASH, FIXED (NGASH)
KBOUN = KBGUN +1
CONTINUE

ADD REACTIONS INTO THE TOTAL I.OAD ARRAY
WRITE(S, #+) "ADD REACTIONS

DD 70C IPQIN =1, NPUOIN
DO 710 IELEM =1, NELEM
DO 710 INDLE =i, NNOD
NLDCA = IAES(LNOLDS(IELEM, INODE)
IF CIFQIN EQ. NLOCA) GO TO 720
DO 736G IDOFN =1, NDOFN
NGASH = (IWIDE-~1;+NCDOFN+IDOFN
MGASH = (IPDIN-1)=*NCOFN+IDOFN
WRITE(SO, ») 'TLOAD(IELEM, NGASH) ., IELEM, NGASH *
WRITE (S0, =) TLDAD(IELEM,NGASH):IELEN:NGASH
IBS%?&IELEMJNQHQPi =TLOAD(IELEM, NGASH) +FIXED (MGASH)
WRITE(S, #) 'START RETURNING FROM FRONT
G0 TO 333
RETURN

SUBROUT INE FUNC
SUBROUT INE FUNC (BMATX, SHAPE, THICK, NBORP, NNODE, ZETA, MELEM,
COORD, DICOS, LLNODS, IELEM, MPOIN, M3POI, GMATX)
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SETS UP THE [(B] MATRIX AND JACOBIAN: BEING THE MOST CHARECTERISTIC

SUBRCUTINE OF THIS ELEMENT

2 3T A A 43 S 3 3P 309 30 S 3E 3 I 3646 38 SH 30 0 E 30 3 3 0 3 30 96 3 49 36 3 I I I8 I 903630 3030 I 9030 % 3

coMMOrd WORMX (3, 24), GVALU, DJACB
DIMENSION BMATX(S, 45), SHAPE (3, %), THICK(MPDIN) GMATX(2, 43),
CDORD(MPDIN.B),DICOS(Q:MBPDI) LNODS(MELEN.?)

THIS CREATES X, Y, Z IN COLUMN 1 AND J-TRANSPOSE IN COLUMN 2-4

Do 20 I =1,3
bo 20 =1,




Bie

<% 3t 3¢

+%%

WORMX (.

WRITE (23,
WRITE(ZG
FORMAT (1
THE ELEME
PPN = 8
DO 24 INOD
IPOIN = im
WRITE (5,

DO 24 # .:i~

STOP =
GEQT =

i)
o7
GOSH 1

]

3]

U
- - hf O
IMERML e A~ 0!

P i

SRS
Pl A, -

EXIT FOF
IF(NEDORF £
THIS CREA
CaLL VECT(
THIS
NFR = &
CALL FRAME
IFINBRRF. &

CREATES T

Do

DO

p2 4¢
S

NEHAP

WRIT
Do 2&
DO 26 K

WOR MY (
IF(J. GE
Do 292 =

40
4G

by

e svnanab o6

T WD b
pas
PR

[ I s b K i}

L 1%
o Q
0 b
X (I -4
PAaN i fw For T
< U A
W Xtheat2Mmoes
~ e Cgoo-
ti i i
AR e N T

P B+
u.v.u A

WOR M (11,
COMTIRUE
CONTINUE
THIS THAN
CALL SIN
WRITE
MU

)

FL

s

Jryo= 0000

* S PE IN FUNC'
. 288" {SHAFPE (I, ),
Y,3F14 ,‘

NT GECMETRY

£ =1, PPN
BS(LNCDS( ISLEM, INODE))
+) ‘$3F$IPOIN IN FUNC$$%$%, IPOIN, IELEM, INODE

J=1,9): I=1.3)
FINED BY THE B8-NODE SERENDIPITY

1% DE

LJ

RDOIPQIN, ¥

RS 1IrDIN:K i

- IRGTOP + (1. O~-ZETA'#GBOT)I/2.0
CP GZ2OT, GOSH. ", GTOP, GBOT, GOSH

TWORMLOK, J) L WORMX (K, J)Y, ‘K=", K, 'J=7, J
= WORMOLY, 1) +GOSHIEHAPE (U, INODE)
= WORMY + SHAPE (1. INODE)*(GTOP-GBOT)/2. 0
IN COLUMNS S5-7 OF WORMX

s
e LY~ ﬁ L_
O l*l
—~n
"*l

~——

(A, &)
NVERSE

AN £ § RNV
r-‘H

B3O

T

Q.
T

3

L
T WHEM J. J-INVERSE AND DET-J ONLY ARE REQUIRED
i3 *ﬁ 2C

IR TzﬂN IETA NORMAL TO XI AND ETA

HL CARTESIAN SET

N OG UG

T3
:

o

{

(HFR,
\

sl Y
Ci. ha 9 e

HE RAIN/DISPLACEMENT MATRIX

- M

REATED AT A NORMAL
‘1 INQDE, J, NSHAP

L,_-‘,_(‘.u

'JJHAP

AMT ETA DERIVATIVES
; THAME W, INDODED)
WA, ALY =, WORMX (U, K+10)

2 1,2 FOR LOCAL X, Y DEFLECTIONS OF ENDS OF NORMA

-3

OMPDHENTS OF (LOCAL X. Y DEFLECTIONS

ES(LNTDS(] ELEM:INDDE\)

POIMN—1Y23

oot PRSI JIPOSI)

£ 2 60 TO 32

=H R

dgoiig XT. ETA DERIVATIVES - K-4 CIVES SPECIAL ZETA DRIVATIVES
10) = ZETA*SHAPE (X, INODE)*GASH# (THICK ( IPOIN) /2. 0)

RE MNOW IN COUL 11
#+10) = SHAPE (1, INODE)#GASH*# (THICK(IPOIN)/2. )

ZPDEES X1, ETA AND ZETA DERIVATIVES OF U, V., W
GOP (12,3}

2) COMES OUT OF SINGOP, J =, J

IES BdengVERSE TO FORM X-Y-Z DERIVATIVES OF U, V, W
l:" 121‘ 1wt

. Y. I DERIVATIVES (OF U, V., W FROM COL 1S5 TO COL 18
) "ENTERS MATHM WITH NPCN = 8¢

MNPN)

& OUT OF MATM WITH NOPN =3°
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WRITE(S, »; "COmEs QUT OF MATM WITH NPON = 8°
WRITE(2C, +) "ValUE OF WORMX IN FUNC
WRITE(2C, 1191 (TWORMXC(IKI, JKJ), JAJ=1,24), IKI=1,3)
FORMaYT(1x, SET2 7)
T?IS CCMVERTE T3 LOCAL AXES AT INTEGRATING POINT
NN =2
JNN = 18
KNN =01
CALL FRAME ¢« I8N, JNN, ANN, 43
WRITE(Z, = !
WRITE i C2MESOQUTOFFRAMETINFUNCY
WRITE(2S, 2 walue OF WDORMX IN FUNC 7
WRITE(20 1151 (CWORMX LRI, JKJ), JAJ=1, 24), IKI=]1, 3)
FORMAT (1X, 3ELd. 7
SETS Wt HATRIX TERMS
IF (NBOSY 29
BMaT 1 01,189
EHMATX L 2 L2, 19
Bi1ATX (3, L2, 13 + WORMX(1, 19)
EMATX (3. MO, 207+ WORMX(Z: 18)
BMATX (3, MSHAP WIRMX (2, 200 + WORMX (3, 192
WRITE(2G. 4"CJH°PNENTS gF BMATX”
WRITE2D » 3 (RLT{ TR, NSHAP ) IK=1, 8)

LOCL STHAINS 30 IN EMATX IN THE ORDER X, Y, XY, XZ, YZ
GMATX (1, NSHARF - = WORMX (1, 20)
GMATX (2, NSHARF Y = WORMX (2. 20)
LOCAL CERIVATVIVES GO IN -GMATX- IN THE ORDER DW/DX, DW/DY

THEAR TERMS FOR SELECTIVE INTEGRATION
WEMX 1, 20 +WORMX (3, 18)
WORMX (2, 20)+WORMX (3, 19)

#'C OMESOQOUTOF 4 0

I

>
LG

%

mnom

I H

WRITE(S. «3 ‘RETUENING BACA TO BGMAT '

ErJJTBFD 'r‘f&"“ 1T ‘»"!-
SUBROQUT INE 3 fW‘A“ » POSGP, WEIGP)
D B B e L L S st Lt L L LTy
THIS SUBRCUTINEG SETS UP THE GAUSS-LEGENDRE INTEGRATION CONSTANTS
AR T FARE I TR H R HR RS A BT I I 38336 33 T I 83 I3
DIMENSICN FOSGP(S). WEIGP (5)
DO 2 IGASH =1,53
POSGP (IGASH) = C. O
WEIGP(IGASH) = ¢ O
IF(NGAUS GT 2) GO TO 4

POSGP (1 = -0 S773302691892626
WEIGP (1} = 1.0
GO 70 B
POSGP {1 = —0 773435966692414E3
POSGP (2) = 0.0
WEIGP (1) = Q. 3555555555555556
WEIGP (2} = 0. 882838888888838%
KGAUS = NGAUS/2

DO 10 IGASH =1, KGAUS

JGASH = NGAUS + 1 -IGASH

POSGP (JUGASH) = —-POSGP (IGASH)

WEIGP (JGASH) = WEIGP (IGASH)
CONTINUE

EXTRA POSITION FOR TWO GAUSS POINT RULE(SELECTIVE INTEGRATION)

POSGP (4) = —0 57735026918926
WEIGP (4) = 1.

POSGP (3) = -PDSGP(4)

WEIGP (3) = WEIGP(4)

RETURN

END

SUBROUTINE GEOME (ESTIF, GMATX, STRSG, MEVAB, NEVAB: MTOTG, KGAUS, DVOLU)
P L T RS T R SR T R YR R T YR S LT L R R T T TR R Y R e e e Y

| O T R PRI
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’ THIS SUBROUTINE CALCULATES THE GEOMETRIC MATRIX -GEMTX-
S 36 SHIE 23 32 T332 T3 TSI IS A 026 6 SIS 66T SIS N

DIMENSION ESTIF(MEVAB, MEVAB), GMATX(2, 43), STRSG (3, MTOTG), 45},
GEMTX(45,4%), GDUMM(2,45), STDUM(2, 2)
DO 5 1EVAB =1, NEVAB
DO S JEVAB =1, NEVAB
GEMT X (IEVAB, JEVAB) = 0.0

SET UP -STUDM- MATRIX WITH THE ACTUAL IN-PLANE STRESSES
STDUM (1, 1) STRSG (1, KGAUS)
STDUM (1, 2) STRSG (3, KGAUS)
STDUM(2, 1) STRSG (3, KGAUS)
STOUM (2, 23 TREG (2, KGAUS?
EVAL UATE THE PRODUCT OF STUDM#GMATX
pQ 10 I =1.2
DO 1C IEVAB = 1,HEVADR
GDUMMIT, TEVABY = 0 0

.t

DO 10 ) =1,2
o SoUMMCT, TEVAT Y SGLUMNM (I, IEVABY+STDUMC I, JI#GMATX (J, IEVAB)
CALCULATE THE 3EDHETRIC MATRIX
oC 20 IEVAR =11
D0 20 JEUAR = NEUAR
oG 2% I =12
- GEMTX( LEVAR. . =GEMT X TEVAE, JEVAEY+GMATX (I, IEVAB) %

GoumMM I, JEVAB)#DVOLU

: | EWALUATE THE NEW STIFFNESS MATRIX ARLING —GEMTX-
DO 20 TEVAT =L NEYAR
002G JE S L NEVAE
3 ESTIF( YESTIF { IEVAT, JEVAE) +GEMTX (IEVAB, JEVAB)
RETLURN
LMD
CUBE QLT it TR e R T oTTTTT T T

H SRS O = A
SUDRCUT LT LTHLRE = -

SUBROUTINE ITaCSEm e 2L s FIXED, [ INCS, MELEM, MEVAB: MITER,

J MV L ,JuOFN NELEM, NEVAB, NQUTP,
2, MNTOT Y, NVEFILX, PRESC, RLOAD, TFACT,
A0, T? e LNDDSvIFFIX,NNODE:NCDLA.
«iT,K NG
R R A R B Haees P orebad el R T TR R R 3636 N
THRLID T e INIRENMENTD THIZ APPLIED LOADING
R LR RN B wver*5$4§}rw??#**#“***#********************
DIMENS IO ’ LEM. MEVADR)Y, FIYED(MTOTVY, NOQUTP (2), NOFIX (MVFIX),
g '/CIi,HLHFN FLSAD (MELEM, MEVAB), TLOAD(MELEM, MEVAB),
MZiEm 9),'L?"’MTOTV3
WRT TE 3T, LINMCS, KINGS, NEVAR C
WRT TE (S ST TIMNCS, WINCS
IF(NREST i) 20
IFIIINCS C 5 THD 20
RO 12 T1ity FRINCS
REAL 13, 735, FAalTy
’ WRITE (S, SO0 IINCS
00 UPMA:(///,&X._rH### CREMZINT NUMBER , I5)
READ( 13, 230y FaACTO, TOLEP, EP.NDUTP(I).ND TRP(2)
i) FCRMAT(2F 10 9. 31%)»
TFACT = TFACTY + FACTOD
WRITE (&, T60YTFACT, TOLER, HITER.NOUTP(I),NDUTP(Z)
A0 FORMAT({HO S5X, 138L0AD FACTOR =,F10. 5, 5X
. 24H COMVERGENCE TOLERANCE =,F10. 5, 3X. 23HNAX NO. OF ITERATIONS=, .,
13, /7 732H INITIAL QUTPUT PARAMETER =, IS5, 35X, 26HFINAL OUTPUT PA

ARAMETER =, I3)

NRITE(SO,*)’FACTDﬂ’,FACTD
DO 80 IELEM =1, MNELEM
DO 30 IEVAE =1. NEVAE
ELDAD ([ELEM, IEVAB)=ELGCAD(IELEM, [EVAB}+RLOAD(IELEM, IEVAB)*#FACTO
TLOAD ([IELEM IEVAC)=TLOAD(IELEM, IEVAB)+RLOAD(IELEM, IEVAB)*#FACTO
?g&;ﬁ(?gQ;é;ELOAD IN 8C-, ELOAD IELEM, IEVAB), IELEM, IEVAB, RLOAD(

WRITE(30, ) ‘SOME QUTPUTS FROM INCREMEN "’

30, %) ‘FACTO=", FACTO

20, %) ‘RLDAD’

rS0, ) ((RLOADCTIL, ALY, JU=1, NEVAB), IL=1, NELEM)
30, #; 'ELOAD

30, ) ((ELCADCIL, JL) ., JL=1, NEVAB), IL=1, NELEM)

N_J..*
- e O -

P N

T R O O T O R I O T I O R I T RI—_—~——~'
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;v,mg

WRITE(SC, =+, 4
WRITE(SO, 4 ”*LOAnflLAJL):JL=1;NEVAB).IL=1:NELEM)
INTRPRET FIXITY UATA IN VECTOR FORM
DO 1C0O ITZTV =i, NTOTY
20 FIXED(ITDTJ’ = 0. C
: WRITE(SQO, =Y MNVFIX "/ NVFIX
DO 110 IWFIX =1, NVFIX
NLOCA = (NOFIX \I”FI"“1?4NDDFN
DO 110 IDOFN =1 MDOFN
NGASH =NULJCA+]IDOFN
FIXED (NGAZH: “J"ESC&I\LIY COFMY#FACTO
WRITE(RG, + "NGAGH, FIERNGA _,?"JPPE._/C FACTO
. WRITE (2, n~P“H ”"CD(HGNZ Y, PRESCCIVFIX, IDOFN), FACTO
.10 CONTINUE
TIOM FOR THE HETERQOSIS ELEMENT
abE CNE. 1Y 30 TO 130
Q I&|

o

RETURN
END

SUBROUTINE INFUT

SUBROUTINE INPUT(ANVEL. COORD, GRAVI, IFFIX, LNODS,
MATHO, MFRON. MELEM, MMATS, MPOIN,
MTOTV. MVF [X, NOFRO, NDOFN, NELEM, NCOLA,
MEVAE, NGAUS, NGAUZ, NMATS, NNODE, MLAYR,
NOFI%, NPOIN. N"ROP, NTOTG. NLAYR, NREST,
NTOTV, NVFIX. POSGP, FRESC, PROPS, WEIGP,
NALGO. NIMCS. LARGE)
FRHA A RA AL A3 AF 0 F AR F R bR R b @ T S SE S 33 3 3F 36 3 33 SN S
THIS SUSHOUTINE ACCEPTS MOST OF THE INPUT DATA
FH A ot or-b s actrcd Eodod il TR F AT G S v b 3 S SER HH3E 3 5E 3 36 SHAE 34 9 36 3R 3 3343
DIMENSION COQRD(MFOIN, 83, IFFI¥ (MTOTV), LNODS(MELEM, 9),
MATND (MELEM, MLAYR), NDFRO(MELEM), GRAVI (3),
NOFIX (MVF LX), FOSGP (51, PRESC (MVFIX, NDOFN),
PROFS (MMa&TS, NFROP Y, TITLE(12), WEIGP(5)
READ( 15, 3G TITLE
WRITE (6. 920) TITLE
220 FORMAT (1246

READ THE FIRSYT C0ATA CARD. AND ECHO IT IMMEDIATELY

READ (15, 2CC:r NPOLIN, NELEM, NVF1X, NNODE, NMATS, NGAUS, NGAUZ, NCOLA,
NALGO, NINCS, MLAYR. LARGE, NREST
) FORMAT (14618, 75X, 15313)
p WRITE (5, F00) HNPOIN, NELEM, NVF T4, NNODE, NMATS, NGAUS, NGAUZ, NCOLA,
: . NALG O, NINCS, NLAYR, LARGE, NREST
NEVAB = NDOFN3*NNGDE
NTOTV = NPOIN=2NDOFN
NGAUZ2 = NGAUS#NGAUS
NTOTG = NELEM*NGAUZ *NLAYR
WRITE(Y, #) "NEVAE, NDOFN, NNCCE, NPOIN, NGAUS, NAGUZ2, NLAYR, NTOTV
WRITE(S, #)NEVAR, NDOFti, NNODE. NPOIN, NGAUS: NGAUZ2, NLAYR, NTOTV
WRITE (4, 901) NFOIN, NELEM, NVF I X, NNODE, NMATS, NGAUS, NGAUZ, NEVAB,
. NCOLA, NALGO, NINCS, NLAYR, LARGE, MREST
1 FORMAT(///,5X, 8H NPOIN =, IS, /35X, 8H NELEM =, I13/3X, 8H NVFIX =, 13, /
. /3X.8H NNODE =, I3/5X,BH NMATS =, I3/3X, BH NGAUS =, I3/

3 NN

35X, 8H NGAUZ =, I5/5X, BH NEVAB =, I13/3X, 8H NCOLA =, I8/3X,
8H NALGO =, I5/5X, 84 NINCS =, 13, /,
3X,8H NLAYR =, I3/3X,8H LARGE =, I3/3X,.8H NREST =,19)
WRITE (6, ?12)
READ( 13, 913) GRAVI(1}, GRAVI(2), GRAVI(3), ANVEL
L WRITE (6, 913) GRAVI(1), GRAVI(2)}, GRAVI(3), ANVEL
? FORMAT(//41H X-GRAVITY Y~-GRAVITY Z-GRAVITY ANG VEL /)
713 FORMAT(4F10. 5)
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caLl CHECKI(NDDFNANELEM NGAUS, NMATS, NNODE, NPOIN,
NMATS, NVFIX, NGAUZ, NLAYR?}

READ THE ELEMENT NODAL CONNECTIONS, AND THE PROPERTY NUMBERS

WRITE (&6, 202
2 FORMAT(//8BH ELEMENT, SX, 15H PROPERTY/LAYER, 35X, 12HNODE NUMBERS)
DO 2 IELEM =1, NELEM
READ( 15, 299 MNUMEL, (MATNO(NUMEL, ILAYR), ILAYR=1, NLAYR)
READ( 15, 999) (LNODS{NUMEL, INODE), INODE=1, NNODE)
WRITE (&, 203} NUMEL, (MATNO(NUMEL, ILAYR), ILAYR=1, NLAYR)
WRITE (S, 203) NUMEL, (MATND(NUMEL., ILAYR)., ILAYR=1, NLAYR)
WRITE (&, 9401 ) (LMODS(HUMEL, INODE), INODE=1, NNODE)
WRITE (35, 3401) (LNODS{NUMEL, INODE), INGDE=1, NNODE)
3 FORMAT(1X, I3, 4X, 1015}
01 FORMAT (12135
9 FORMAT(11IS)

ZERO ALL THE NODAL COCRDINATES, PRIOR TU READING SOME OF THEM
DO 4 IPOIN =1, MNPOIN
DO 4 IDIME =1.,8
¥ COORDC(IPOIN, IDIME) = Q.0
: D10 READ SOME NODAL CO-ORDINATES, FINISHING WITH LAST NODE OF ALL

WRITE (&, 204}

[y

© wlagrres

[OF Y PR

?04 FORMAT{//5H NODE, 8X, 1HX, 14X, 1HY, 14X, 1HZ, 13X, SHPRESS)
: READ (15, 905y IFDIN, (COORE(IPOIN, IDIME), IDIME=1, 8)
- WRITE(S, 905} 1PCIN, (COORD{IPQIN, IDIME), IDIME=1, 8)
7wl FORMAT (IS, 4F13. 10/3X, 4F15. 10)
. IF(IPOIN. NE. d”OIN) GO TO &
. INTERPOLATE CO—~-OPDINATES OF MID-SIDE NODES
: CALL NODEX(C2ORD, LNIDS, MELEM. MPOIN, NELEM. NNODE)
RO 10 IPCIN = l.NPDIN
L0 WRITE(4, 9C4) IFPCIN, (COORD(IPOIN, IDIME) IDIVE 1 8)
. WRITE(S, 904} 1PDIN:(CDDPD(IP IN, IDIME), IDIME=1, B}

P4 FORMAT (1S, 4F15. 10/5X, 4F15. 10)
READ THE FIXED VALUES

WRITE (&, Q07
L7 FORMAT Y //3H NDODE, &%, 4HCODE, 15X, 12HFIXED VALUES)

DO B IVFIY =1,nMNVFI
. IFPRE, (PRESC(IVFIX, IDOFN}, IDOFN=1, NDOFN)

READ( 15, YOBIYNOS T4 [MF1X)

WRITE (&, F0BINDF LA CIVFIX), IFPRE, (PRESC(IVFIX, IDOFN), IDOFN=1, NDOFN)
IXi=1:sNDOFN

4

NLOCA = (NOFIX:IVF

IFDOF =10+3#(NDGFN—-1}

DO 8 IDOFN =1, NDOFN

NGASH = NI_OCA+ IDOFN

IFC(IFPRE. LY IFCOF)GO TO 8

IFFIX (NGASH) = 1

IFFRE = IFPRE ~ IFDOF

IFDOF = IFDOF/10

FORMAT(1X, I4, 5X, I3, 53X, 5F10. &)

READ THE AVAILAELE SELECTION OF ELEMENT PRCPERTIES
WRITE (&, 910)
FORMAT (//7&H NUMAT, 10X, 1B8HELEMENT PROPERTIES)
DO 18 IMATS =1, NMATS
READ( 13, 2002) NUMAT

922 FORMAT (15)
PROPS (NUMAT, IPROP), IPROP=1, NPROP)
1

LIl i du
13}

4
o

READ( 15, 930)
FORMAT (7F 5/7F10. 5/3F10. 5)
' 9 JUMAT.(PROPS(NUMAT,IPROP).IPROP=1:NPRDP)
NUMAT, PROPS. . . . . ..

PROPS (NUMAT. IPRQP), IPROP=1,
PROPS (NUMAT. IPRQP), IPROP=8,
PROPS (NUMAT, IPROP), IPROP=13

o
X
b
e

7)
14)
WR 1 17)

Dot T

N
(
(
(
)
)
AT, (PROPS(NUMAT, IPROP ), IPROP=1, NPROP)
4,3X,7E13. 5/,8X,7E13. 5/,8X,3E13. 3)

> TR~~~ “3
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SET UP THE GAUSSIAN INTEGRATION CONSTANTS
CALL GAUSSQ(NGAUS, POSGP, WEIGP)
CALL CHECK2(COORD, IFFIX, LNODS. MATNG, MELEM, MFRON, MPOIN, MTOTV,
MVFIX, NDFRO, NDOFN, NELEM, NMATS, NNODE, NOF I X, NPOIN,
NVFIX, NLAYR)
RETURN
END

SUBROUTINE INVAR
SUBROUTINE INVAR(A, ST, LPROP. MMATS, YIELD)

e R e e s e et L L s L L s
THIS SUBROUTINE EVALUATES THE CURRENT VALUE OF THE YIELD FUNCTION
B T U GRS AHNN F A E I F RTINS RS
DlhggggDN ST(3), A(9, MMATS)

=

GASH = AL, L)#S5T{1)+2. 0#A(2, L)#ST(1)+2. O#A(I, LI#ST(1)#5T(3)+
ACR, L)=8ST(2)%ST(2)+2. O#A(D, LI#ST(21#8T (D) +A(6, LI#ST(3)AST(I)
+A(T, LI #ST(41#ST(4)+A(8, L¥#ST(4)#ET(I+A(F, LI#ST(J)#8T(D)

YIELD = SQRT(GASH}
RETURN
END

SUBROUTINE LDIsSP
SUBROUTINE LDISP(BMATXY, GMATX, ETDIS, NEVAB)

S SEE AR H T T SR SE T NI 03 3 I8 46 3 33 SH 30 36 664 3626 303 2626 36 36 3 6 3 36 3 26 4 63 36 3
THIS SUBROUTINE EVALUATES THE INITIAL DISPLACEMENT MATRIX -BLARG-
AND ADDS IT UP TO BEMATX

LRSS LSt RELELES SIS ELEELELEL RS DL L st L]
DIMENSION BPMATYX (S, 435), GMATX(2,45), ETDIS(43), ADUMM(3, 2), }

BLARG(3, 43)

CALCULATE THE aACTUAL —-X- AND -Y- DERIVATIVES OF -W- DISPLACEMENT
DWDXX = Q.G

DWDYY = Q0.0

DO 10 IEVAB =1, NEVAB

DWDXX = DWDXX+GMATX (1, IEVAB)*ETDIS EVA

DWRYY = DWDYY+GMATX (2, IEVAB}+ETDI (IEVAB)

SET UP THE —-ADUMM- MATRIX
ADUMM (1, 1) = DWDXX
ADUMM (1,2} = Q. C
ADUMM (2, 1) = 0. CQ
ADUMM (2, 2) = DWDYY
ADUMM (3, 1) = DWDRYY
ADUMM (3, 23 = DWDXX
NOW CALCULATE THE -BLARG- MATRIX

DO 20 IEVAB =1, NEVAB

DO 20 I=1,C3

BLARG (I, IEVAB) = 0.0

DO 20 J=1,2
BLARG(1, IEVAB)= BLARG(I, IEVAB)+ADUMM(I, J}#GMATX (J, IEVAB)
THE NEW —-BMATX- IS EQUAL TQ -BMATX+BLARG

DO 30 IEVABR =1, NEVAB

DO 30 I=1.3
BMATX (I, IEVAB) = BMATX(I, IEVAB)+BLARG(I, IEVAB)

SUBROUTINE LOADS
SUBROUTINE LDADS (ANVEL, COORD, ELOAD, GRAVI, LNODS,
MATNQ, MELEM, MEVAB, MMATS, MPOIN, DICQS,
NELEM. NEVAB, NGAUS, THICK,
NNODE, NPROP, NSTRE, POSGP, M3POI,
PROPS, WEIGP, MLAYR, NLAYR)
W40 3 28364030 0 5 38 3 338333 2 I W A AT 366 T3 3T 392338 08 388 9 36 36 30 236 90200030 30 28
THIS SUBROUTINE EVALUATES THE NODAL FORCES DUE TO EXTERNAL
APPL IED LOADS(CENTRIFUGAL, GRAVITY, PRESSURE AND POINT LOADS)
bbbttt e et T I I T LSRR S S FEE 2 A SR 2 S T2 T A 2 2 L e T
COMMON WORMX (3, 24), QVALU, DJACB

DIMENSION BMATX (S5, 45), COORD(MPOIN, 8},
ELOAD (MELEM. MEVAB), GRAVI (3), LNODS(MELEM, 9},
MATNO (MELEM, MLAYR), POSGP (5}, DICOS (3, M3POI),
PROPS (MMATS, NPROP ), SHAPE (3, 9), STREN(D3,,
THICK(MPOIN), WEIGP (S), GMATX (2, 43)




~Q

02

REWIND &

LOOP OVER EACH ELEMENT
DO 150 IELEM =1, NELEM

READ THE CHARECTERISTICS OF THE APPLIED LOADS
WRITE(&0, ) "ELEMENT =', IELEM

READ( 15, 200} NPRES, NUCLO, NBODY
WRITE (&0, 201 ) NPRES, NUCLO, NBODY
WRITE (&6, 9013 NPRES, NuCLO, NBADY
FORMAT (SIS}
FORMAT (B4 NPRES =, IS5, S5X, BH NUCLO =, 3X, 8H NBODY =,13)
IF(NPRES. EQ. 0) GO 7TQ 3
READ( 13, 202! WKPRES: CFACE, PREVA, SURFA
WRITE (&, ?02) WKWFRES, CFACE, PREVA, SURFA
FORMAT (IS, FS. 1. 2F13. 3}

CFACE IS +1. 0 OR —-1.0, ACCORDING AS PRESSURE IS ON TOP OR
BOTTOM SURFACE

CONT INUE
INITIALIZE THE LOAD MATRIX ELOAD ONE COLUMN AT EACH TIME

DO 4 [EVAB =1, NEVADR
ELOADCIELEM, IEVAB) = 0.0

ENTER THE LOOPS OVER GAUSS POINTS FOR NUMERICAL INTEGRATION

DO 1435 IGAUS =1, NGAUS

DO 143 JGALS =1, NGAUS

EXISP = POSGP(IGAUS)

ETASP = POSGP{(JGAUS:}
WRITE(&LO, %) "EXISP, ETASP, POSGF (1GAUS), POSGP (JGAUS) -
WRITE(AO, *)EXISP, ETASP, POSGP (IGAUS) . POSGP (JGAUS)

CALL SFR1(SHAPE, EXISP, ETASP)

IF(NBODY. EQ. O) GO TO 141

ZETSP = -1.0

DO 140 ILAYR =i, NLAYR

LPROP = MATMO(IELEM, ILAYR)}
DZETA = PRCPS(LPROP, 3}
ZETSP = ZETSP+DIZIETA/2. 0

READ(8) BMATX, GMATX, DVOLU
CALCULATE THE CENTRIFUGAL. GRAVITATIONAL PRESSURE AND POINT LOADS

CENTRIFUGAL FORCE
IF(ANVEL. EG ©0. 0 GO TO 70
NPROP = 2
CALL FUNC(BMATK, SHAPE, THICK, NBORP, NNODE, ZETSP, MELEM, COORD, DICQOS.,
LNOCS, IELEM, MPOIN, M3POI, GMATX)
GASH = PROPS(LPRQOP, 4)#ANVEL#ANVEL#DVOLU
DQ 45 IS=1.,2
STREN(IS) = GASH#WORMX (IS, 1)
CONTINUVE
STREN(3) = 0 O
DO 65 INODE = 1, NNODE
FIND THE PCSITICON OF THE V-1 AND V-2 VECTORS
IPOIN = IABS(LNODS(IELEM, INODE))
JPOSI = (IPDIN-1)>#%3
DO 65 ISTRE =1, NSTRE
IEVAE = (INDDE-1)#3+ISTRE
IF(ISTRE. GT. 3) GO TO 50
gbO?g(égLEH,IEVAB)=ELOAD(IELEM.IEVAB)+STREN(ISTRE)*SHAPE(I:INUDE)
JPOSI = JPOSI +1
GASH = SHAPE(1, INODE)#(THICK(IPOIN)/2. O)*ZETSP
IF(ISTRE. NE. 3 GO TO 35

GASH = —~-GASH
DO 60 ILL=1,2
ELOAD(IELEM, IEVAB) = ELOCAD(IELEM, IEVAB)+STREN(ILL)*
DICOS(ILL, JPOSI) #GASH
CONTINUVE
CONTINUE
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-40

~1

iy

GRAVITY

GASH = PROPS{LFROF, 4)*DVOLU

PO 73 IMM=1,3

STRENCIMM) = GRAVI(IMM)#GASH

DO 95 INODE=1,NNODE

IPOIN = IABS(LNGDS(IELEM, INCODE))
JPASI=(IPOIN-1}%3

DO 93 ISTRE =1, NSTRE

[EVAB=( INODE-1)*#S+ISTRE

IF(ISTRE. GT. 3) GO 70 80
ELOAD (IELEM, IEVAR)=ELOAD(IELEM, IEVAB)+STREN(ISTRE)#

SHAPE (1, INODE)

G0 TO 935

JPOSI = FOSI+1
GASH = SHAPE(1l, INODE)}#(THICK(IPOIN)/2. O)#ZETSP
IF(ISTRE. NE. 5 GO TO 85
GASH = —GASH
DO 90 TAK=1,3
ELOAD(IELEM, IEVAB)=ELOAD(IELEM, IEVAB)+STREN(IKK) #
DICAS(IKK, JPOSTI ) #GASH
CONTINUE

ZETSP = ZETSP+DIZETA/2. 0
CONTINUVE

CALCULATE THE NODAL LOADE DUE TO PRESSURE

IF (NPRES. EGQ. O3 GD TO 142

CALL PRES(EMATX., COORD, ELOAD, LNODS, POSGP, SHAPE, THICK,
WEIGP, IELEM, IGAUS, JGAUS, MELEM, MPOIN, NNODE,
NEVAB, KPRES, CFACE, PREVA, SURFA, DICOS, M3POI)

DONTINUE

ONTINUE

POINT LOALS

IF(NUCLD EQ 0O) GO TO 130

IS THE PRESENT ELEMENT A LOADED ELEMENT. IF IT IS
READ AND ACCUMULATE THE LOADS IN ELOAD
WRITE(&0,3#) "NUCLD=", NUCLO
DO 120 IGASP=1, NUCLO
READ( 13, ?50) LPOIN., LDOFN, CARGA
WRITE (60, 960)LPOIN, LDOFN: CARGA
WRITE (&6, 960 L.POIN: LDOFN, CARGA

C
c

WRITE(S, #) "HERE ARE SOME VALUES READ’
WRITE(S, ?503LPOIN, LDOFN, CARGA
IEVAB = (LFOIN-1)+3+LDOFN
WRITE(&LO, ) "IEVAB, LDOFN ", IEVAB, LDOFN
ELOAD(IELEM, IEVAB)=ELOAD(IELEM, IEVAB)+CARGA
WRITE(&O, #) 'ELOAD. . . . ‘, ELOAD(IELEM, IEVAB)
CONTINUE
WRITE(&O, #) ‘ELOAD*, ((ELOAD(I, J), J=1, IEVAB), I=1, NELEM)
FORMAT(2I35,F10. 3}
FORMAT(//8H LPQIN =,15,8H LDOFN =, I5,7H LOAD =,F16.8/)
REEURN

SUBROUTINE MATM
SUBROUTINE MATM(N1, N2, N3, NOPN)

Fr A 3 T332 TG 23 3% 2% 332 36 333 I 38 I 36 3 5E 38 3 36 36 3038 30 36 0 369 F 33 3 $H3E 31 3H 3 JH 0 S IE I IE
MATRIX MANIPULATIONS

NOPN = 1, TRANSPOSE-INVERT N1 INTO N2, DJACB = 1/QVALU
NOPN = 2, TRANSPOSE-MULT., AWK, I)#B(K,J) = C(I,J)

(I.E. A IS TRANSPOSED)

NOPN = 3, TRUE MULTIPLY, A(I,K)#B(K,J) = C(I,J)

NOPN = 4, MATRIX (TRANSPOSED)#VECTOR

NOPN = 3, TRANSPOSE MATRIX N1 INTO N2

NOPN = &, NORMALIZE N1 INTO N2, IN COLUMNS

NOPN = 7, N1 AND N2 OPEN SCISSORS-FAXHION TO BE ORTHOGONAL
NOPN = 8, TRANSFER MATRIX N1 INTO N2

NOPN = 9, MATRIX Ni#VECTOR N2 = VECTOR N3

33628 3 35 3 5H 34 3 H3F U I 34 38 3F 3 3 3626 36 36 3 34 35 34 3 S 36 I 30 303 3 36 36 34 30 I I 36 36 I 3438 36 I W 9 9NN
COMMON WORMX (3, 24), QVALU:DJACDB

WRITE(S, *) . . .. ... E TERINGMATM

WRITE(S, %) 7. NOPN IN MATN » NOPN

FORMAT(/1X, 3E14. 7)
Gt'z TOQ( 1,2,3,4,3,6:,7,8,9), NOPN
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DO 10 I =1,3

J=4 - I K

ML = NI + U

M2 = N1l + K

M3 = N2 + I -1

M4 = N1 + 1 -1
WRITE(S, #) ‘QvalLy IN MATM FIRST BEFORE CALLING VECT ', GvAaLU
WRITE(S, #) "++++++1, J, K, ML, M2, M3, M4++++ ', I, J, K, M1, M2, M3, M4
CALL VECT(M1, M2, M3, 4)

WRITE(S, #) 'QVALUE ONCE : @VALU
CALL VECT(M4, M3, 0., 1)
WRITE (S, #) ‘QVALU NEXT ", GVALU
WRITE(S, #} "GVALU IN MATM AFTER CALLING VECT~’
NRITE(5,*"!!!!!!!!!QVQLU""' QvaLuy
IF (GVALU. NE.O.0) GO TO 22
WRITE (&, 21)
STSgRﬂAT(17H ZERQ DETERMINANT)
EXECUTION IS TERMINATED WHEN THE DETERMINANT IS ZERO
GvalLlU = 1. 0/QVALU
CAkL V%CT(MB:MB;O.G)

3 = N3
WORMX (

AR

-1
ASH + WORMX (I, M1)#WORMX (L, M2)
M3y = GASH

O 14 1 = 1,3

MiI = N1+I-1

CALL VECT(MI,N2,0:1)
WORMX (I, N3) = @ValLU

CALL SINGOP
CALL VECT(N
GASH = -QVALU
PO 17 I =1,3
GISH = WORMX(
GOSH = WORMX(

)

-
o~
+ -
0~

QRT (1. O—-GVALU#QVALU))

WORMX (1, N1)
WORMX (I, N2
RETURN
DO 18 J =1,3
N1J = N1+J-1
N2J = N2 +J -1
DO 18 I =1,3
WORMX (I, N2J) = WORMX(I,NLJ)

1)

2

SH+GASH*GOSH
GOSH + GASH#GISH
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NiJ = NI + J -1
GASH = GASH + WORMX (I, N1J)#WORMX (J, N2)
WORMX (I, N3) = GASH
RETURN
END
SUBROUTINE MODAN
SUBROUTINE MODAN{AMATX, DMATT, NMATS, NPROP, PROPS, MMATS,
MATNO, MEL.EM, MLAYR, NELEM, NLAYR)
34363 S 36 B T 3155 35 3 3 30 3 3 38 3 3 35 30 36 35 3556 36 3 35 35 3 3 38 343 35 34 36 35 3 30 36 36 3 3 3 36 36 30 3 35 34 34 36 3 36 3¢
CACLULATES THE MATRIX OF ELASTICITY -D—- AND THE MATRIX OF
ANISOTROPIC PARAMETERS ~AMATX-—- FOR EACH MATERIAL
M 23T R W I I3 I3 33 SE SIS 330030 3030 333 I3
DIMENSION AMATX(?: MMATS), DMATT(S. 3, MMATS ), PROPS(MMATS, NPROP },
APARA(S, 5), TRANS (3, B), GASHM(3, 3), MATNO(MELEM, MLAYR),
COEFE(2)
DO 15 IMATS = 1, NMATS

SETS UP THE MATRIX OF THE ANISOTROPIC PARAMETERS
UNIAX = PROPS(IMATS, &)
DQ 5 I=1,9%
AMAT X (I, IMATS) = 0.0
AMATX (1, IMATS) = 1.0
WRITE(S, #) . . .. .. ... PROPS(IMATS, 12)=. .. ... ... ‘» PROPS(IMATS, 12)

DMATT (4, 4, IMATS)
DMATT (5, 3, IMATS)
CONTINUE

CALCULATE THE SHEAR CORRECTION FACTOR

IF (NMATS.NE. 1} GO TO 25
DO 20 1 =1,2
COEFE(I) = 5. 0/s6.0
GO _TO 27
DO 26 IELEM =1, NELEM
KOUNT =0 .
DO 2& ILAYR =2, NLAYR
IF(MATNOCIELEM, ILAYR). EG. MATNO(IELEM, ILAYR~1))G0O TO 26
KOUNT = KOUNT +# 1
CONTINUE
IF(KOUNT.EQ. O0) GO TO 19
CALL SHEARC(MATND, MELEM, MLAYR, PROPS, MMATS, NPROP,
COEFE.: NLAYR, DMATT)
DO 28 IMATS = 1, NMATS
DMATT (4, 4, IMATS) = DMATT(4, 4, IMATS)#COEFE(1)
DMATT (3, 5, IMATS) = DMATT(S, S, IMATS)*#COEFE(2)
WRITE (&, 200) (COEFE(I), I=1,2)
FORMAT(/" COEFE(1) =',EL135 4, 3X, ‘COEFE(2)=',E15. 87)

DO _80 IMATS = 1, NMATS
IF THE REFERENTIAL SYSTEM OF AXES COINCIDES WITH THE
PRINCIPAL AXES OF MATERIAL - GO TO 80

THETA = PROPS(IMATS, 17)
IF(ABS(THETA). LT. 0. 001) GO TO 80

PROPS (IMATS, 10)
PROPS(IMATS, 11

AMATX (4, IMATS) = (UNIAX/PROPS(IMATS, 12))r##2. Q

A3Z = (UNIAX/PROPS(IMATS, 13))#%#2. O

AMATX (&, IMATS) = (UNIAX/PROPS(IMATS, 14) )##2.

AMATX (2, IMATS) = 2 0O#A3Z-0. 9% (1. 0+AMATX(4:IHATS)+AMATX(6:IMATS))
AMATX (7, IMATS) = (UNIAX/PROPS(IMATS: 15))##2. Q

AMATX (2, IMATS) = (UNIAX/PROPS(IMATS, 1&))#%#2. 0

SETS UP THE ELASTICITY MATRIX -D-

GASH = 1. 0 — PROPS(IMATS, 2)##2. O#PROPS(IMATS, 8) /PROPS(IMATS., 1)
DO 10 I =1,5

DQ 10 J=1,5

DMATT(I, J, IMATS) = 0.0

DMATT (1, 1, IMATS) = PROPS(IMATS, 1)/GASH

DMATT (2, 2, IMATS) = PROPS(IMATS, 8)/GASH

DMATT (1, 2, IMATS) = PROPS(IMATS, 2)#DMATT(2, 2, IMATS)
DMATT (2, 1, IMATS) = DMATT (1,2, IMATS)

DMATT (3, 3, IMATS) = PRUOPS(IMATS, ?)
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35
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SETS UP THE TRANSFORMATION MATRIX —-TRANS-
DO 30 I =1.95
DQ 30 J =1.5
TRANS(I, J) = 0.0
C = COS (THETA)
S = SIN(THETA}
TRANS (1, 1) = C»C
TRANS (1,2} = S#S5
TRANS (2, 1) = TRANS(1,2)
TRANS (2, 2) = TRANS(1, 1)
TRANS (1, 3) = C®8
TRANS (3, 1) = —-2. O*TRANS(1,3)
TRANS (2, 3) = —TRANS (1, 3}
TRANS (3, 2) = -TRANS(3, 1)
TRANS (3, 3) = TRANS(1, 1)-TRANS(1,2)
TRANS (4,4) = C
TRANS (4, 3) = &
TRANS (5, 4) = -5
TRANS (3, 3) = C
CALCULATE THE FRODUCT OF D MATRIX BY T MATRIX
DO 35 I =1,95
DQ 35 J =1,5
GASHM (I, J) = 0.0
DO 35 K =1,9
GASHM(I. J) = GASHM(I, J) + DMATT(I., K, IMATS)®# TRANS(K, J)
CALCULATED THE TRANSPOSED D MATRIX
DO 40 I =1.95

DO 40 J =1.35

DMATT (I, J, IMATS) =

DO 40 K =1,3
DMATT (I, J, IMATS)

DO 45 I =1,3

DO 45 J =1,5
DMATT (U I, IMATS)

SET UP THE MATRIX

0.0
= DMATT(I, J, IMATS) +TRANS (K, I} #GASHM(K, J}

DMATT(I, J, IMATS)
OF THE ANISOTROPIC PARAMETERS FOR THE MATRIAL

DO 50 I=1,5
DO 50 J =1,3

APARAC(I, 2y = 0.0
APARA (1, 1) = AMATX (1, IMATS)
APARA (1:2) = AMATX (2, IMATS)
APARA (2, 1) = APARA(1, 2}
APARA (2, 2) = AMATX (4, IMATS)
APARA (3. 3) = AMATX (&, IMATS)
AMATX (4, 4) = AMATX (7. IMATS)
AMATX (5. 3) = AMATX (2, IMATS)

SET UP THE NEW TRANSFORMATION MATRIX
TRANS (3, 1) = —-C=»S
TRANS (2, 3) = 2. O#TRANS(3, 1)
TRANS (3, 2) = -TRANG(3, 1)
TRANS (1, 3) = -TRANS(2,3)

CALCULATE THE PRODUCT OF A MATRIX BY T MATRIX
DO 353 I =1,93
DO 35 J =1,3
GASHM (I, J) = 0.0
DO 33 K=1,3

GASHM(I, J) = GASHM(I, JY+APARA(I, K)#TRANS (K, J)
CALCULATE THE NEW ANISOTROPIC PARAMETERS
DO 60 1 =1,95
DO 60 J =1,3
APARA(I, J) = Q.0
DO 60 K=1.,5

APARA(I. J) = APARA(I, J)+TRANS (K, I}#GASHM(K, J)
AMATX (1, IMATS) = APARA(1, 1)
AMATX (2, IMATS) = APARA(1, 2)
AMATX (3, IMATS) = APARA(1, 3)
AMATX (4, IMATS) = APARA(2.2)
AMATX (5, IMATS) = APARA(2, 3)
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AMATX (&, IMATS) = APARA(3, 3)
AMATX (7, IMATS) = APARA(4, 4)
AMATX (8, IMATS: = APARA(4, 3)
AMATX (2, IMATS) = APARA(S, 5)
CONTINUE
WRITE(S, #) " .. . ... GETING OUT OF SUB MODAN . ..... ’
gngRN

SUBROUTINE NODES
SUBROUTINE NODEX (COORD, LNODS: MELEM, MPOIN, NELEM, NNODE)

343363 36 34 336 34 38 3 33 3 35 30 3 36 3 34 3638 36 3 36 3038 30 38 34 36 31 30 30 38 36 96 36 3 4 36 36 3 3 34 S 30N NN
THIS SUBROUTINE INTERPOLATES THE MID SIDE NODES OF STRAIGHT
SIDES OF TH ELEMENTS

33638 24 36 36 3 SH 26 I I SH I 3 53 T I 336 3 T 3030 9E 3 43 34 4 SH 636363 30 50 30 3030 3 I 303 I 30 30303
DIMENSION COORD(MPOIN, 8), LNODS(MELEM, ), ELCOR(8, 8)

LOOP OVER EACH ELEMENT
NNODL = 7
DO 20 INODE = 1.,WNNOD1,2

COMPUTE THE NODE NUMBER OF THE FIRST NODE

NODST = LNODS(IELEM, INODE)
IGASH = INODEx*2
IF(IGASH. GT. 8) IGASH = 1

COMPUTE THE NODE NUMBER OF THE LAST NODE

NODFN = LNODS(IELEM, IGASH)
MIDPT = INODE + 1

COMPUTE THE NODE NUMBER OF THE INTERMEDIATE NODE
NODMD = LNODS(IELEM, MIDPT)
TOTAL =ABS (COORD (NQDMD, 1) )+ABS(COORD (NODMD: 2))+ABS(COORD (NODMD, 3))))

IF THE COEFFICIENTS OF THE INTERMEDIATE NODE ARE ALL ZERO
INTERFPOLATE BY A STRAIGHT LINE
égé;?TALiGT.0.0) GO TO 20
COOQRD(NOCMD, AOUNT} = (COORD(NODST, KOUNT)+COORD (NODFN, KOUNT) ) /2. 0
KOUNT = KOWNT +1
IF(KDUNT. LE. 8) GO TO 10
CONTINUE
IF(NNODE. EQ. 8) GO TO &0

SET UP THE CENTRAL POINT COORDINATES
NODCE = LNDDS(IELEM:?)
DO 30 INODES =1,
NODEB = LNDDS(IELEN:INDDE)
DO 30 IDIME =1,8
ELCOR(IDIME, INODE) = COORD(NODEB, IDIME)
DO 50 IDIME = 1,8
GENCO = 0.0
DO 35 INCDE = 1,7,2
GENCO = GENCO + ELCOR(IDIME, INODE)
GENCO = GENCO#(-0.35)
DO 40 INODE =2,8.2
GENCO = GENCO +ELCOR(IDIME, INODE)
GENCO = GENCO # 0.5
COORD(NODCE, IDIME) = GENCO
CONTINUE
RETURN
END
SUBROUTINE OUTPUT
SUBROUTINE QUTPUT(IITER, MTOTG, MTOTV, MVFIX, NCHECK, NELEM, NGAUS,
NOF I X, NQUTP, NPOIN: NSTRE,
NVFIX, STRSG, TDISP, TREAC, EPSTN, POSGP,
EFFST, MATNG, MMATS, PROPS, NPROP, MELEM, THICK,
MPOIN, LNODS, MLAYR, NLAYR)
33336 30 313t 30 58 3 S S 3E 336 3 34 3 56 35 I 36 38 38 3 6 35 S 35 3 36 30 3 9 8 35 38 6 I 36 I 36 I S 3 36 0 316 I3 3296 30 3 8 0
THIS SUBROUTINE OUTPUTS DISPLACEMENTS, REACTIONS AND STRESSES
363 3830 36 3 3 34 34363 3 I 3 I 3E 3 6 3 36 36 3 34 I 303 I 38 36 6 I 6 I 3F 3303433 03I I I NN N
DIMENSION NOFIX(MVFIX), NOUTP(2), STRSG(3, MTOTG), STRES(6),
TDISP (MTOTV), TREAC (MVFIX, 3), EPSTN(MTOTG),
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POSGP(S), SHAPE (3, 9), EFFST(MTOTG).,
THICK(MPOIN), LNODS(MELEM, 9},
FORCE(8), MATNO(MELEM, MLAYR},
PROPS (MMATS, NPROFP)
KOQUTP = NOUTP (1)}
IF(IITER. GT. 1) KOUTP = NOUTP(2)
IF(IITER. EQ. 1. AND. NCHECK. £Q. 0) KOUTP = NOQUTP(2)

QUTPUT DISPLACEMENTS
IF(KOUTP.LT. 1} GO TO 10
WRITE (&, 200)
FORMAT ( 1HO, SX, 13HDISPLACEMENTS)
WRITE (&6, 205)
FORMAT ( 1HC, 6X, 4HNODE, 4X, 8HX-DISP, 8X, 6HY-DISP, 8X, 6HZ-DISP,
8X, 6HAF-ROT, 8X, 6HBT-ROT)
DO 20 IPOIN =1, NPOIN
NGASH = IPOIN#®#S
NGISH = NGASH - 4
WRITE(&, ?10) IFOIN, (TDISP(IGASH), IGASH = NGISH, NGASH)
FORMAT(I10, S3E14. &)
CONTINUE

QUTPUT REACTIONS
IF(AQUTP. LT 2) GO TO 30
WRITE (&, 920!
FORMAT ( 1HO, 5X, PHREACTIONS)
WRITE (&, 225)
FORMAT (1HO, &X, 4HNODE, 4X, 6HX—REAC. 8X, 6HY-REAC, 8X, 6HZ-REAC,
8X, 6HAF-MOM, 8X, 4HBT-MOM)
DO 40 IVFIX = 1,NVFIX
WRITE(6,910) NOFIX(IVFIX), (TREAC(IVFIX, IDOFN), IDOFN=1, 3)
CONTINUE

QUTPUT STRESSES
IF(AQUTP. LT. 3) GO TO 120
WRITE (&, 9227}

FORMAT (1HO, 5X, BHETRESSES)

WRITE (6, 924&)

FORMAT (1HO, 1X, SHKLAYR, 3X, 6HXX~STR, 8X, 6HYY-STR, 8X, 6HXY-STR,
8X, 6HXZ-STR, 8X, 6HYZI-STR, &6X, 10HEFF-STRESS, 3X,
13HEFF. PL. STRAIN)

KGAUS = O

DO 110 IELEM = 1, NELEM

KELGS = O

WRITE (&, 240) IELEM

FORMAT (1HO, 18H ELEMENT NO., =,185, /)
DO 103 IGAUS =1, NGAUS
DO 103 JGAUS =1, NGAUS
EXISP = POSGP (IGAUS)
ETASP = POSGP (JGAUS)
SET _TO ZERO THE STRESS RESULTANT VECTOR
DQ 70 JFORC = 1.8
FORCE(JFORC) = 0.0
KGASP = 0
KELGS = KELGS + 1
WRITE (&, 945)KELGS
FORMAT(11H G. P. NO. =,135)
CALL SFR1 (SHAPE, EXISP, ETASP)

COMPUTE GAUSS POINT THICKNESS

THIGP = 0.0
DO 63 INODE = 1,8
IPOIN = TABS(LNODS(IELEM, INODE))
THIGP = THIGP+SHAPE(1, INODE)#THICK(IPOIN)
ZETSP = -1.0
DO 100 ILAYR =1, NLAYR
LPROP

= MATNO(IELEM, ILAYR)
DZETA = PROPS(LPROP, 3}
ZETSP = ZETSP+DZETA/2.0
KGAUS = KGAUS + 1
KGASP = KGASP + 1

THE FIVE LOCAL STRESSES IN THE ORDER XX, YY, XY, XZ, YZ
DO SO0 ISTRE =1.NSTRE
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0 STRES(ISTRE} = STRSG(ISTRE, KGAUS)
WRITE (&, 950) KGASP, (STRES(ISTRE). ISTRE=1, NSTRE),
EFFST (KGAUS), EPSTN (KGAUS)

SET UP THE STRESS RESULTANTS IN THE ORDER NX, NY, NXY,MX, MY, GX, QY

DO 75 ISTRE = 1,3
FORCE (ISTRE) = FORCE(ISTRE!+STRES(ISTRE)#THIGP/2. O*DZETA
! FORCE(ISTRE+3) = FORCE(ISTRE+3)-STRES(ISTRE)#THIGP#THIGP#
. ZETSP#DZETA/4. O
DO B8O ISTRE=4,5

: FORCE (ISTRE+3) = FORCE(ISTRE+3)+STRES(ISTRE)#THIGP/2. O#DZETA
Y2 FORMAT (IS, 2X, BE14. &)

ZETSP = ZETSP#DZETA/2.0
.00 CONTINUE

WRITE (&4, 960 FORCE(1), FORCE(4), FORCE(2),FORCE(3), FORCE(3),
. FORCE (&), FORCE(7), FORCE(8)
o FORMAT(/, 22H STRESS RESULTANTS = , 6HN-XX =,E12. 3, 3X,
. &HM-XX =, E12. 5/22X, 6HN-YY =, E12. 3, 3X, 6HM-YY =,
El2 5/22X., 6HN-YY =,E12. 5, 6HM-XY =,E12. 3/,
22X, 6HG-XZ =, E12. 5, 53X, 6HG~-YZ =,E12. 3)
CONTINUE
CONTINUE
CONTINUE
RETURN
END

SUBROUTINE PRES
SUBROUTINE PRES(BMATX.: COORD. ELOAD, LNODS, POSGP, SHAPE, THICK.,
WEIGP, IELEM. IGAUS, JGAUS, MELEM, MPOIN, NNODE,
NEVAB, KPRES, CFACE, PREVA, SURFA, DICOS, M3P0OI)
3630 34 38 3t 35 3 3 3 343 3 3 3E 334 4 3434 36 35 I 3 36 36 34 34 36 I 30 3 3 3 36 36 36 30 3 30 36 T 3 3 30 34 34 363 36 36 3636 W H RN %
THIS SUBROUTINE EVALUATES THE NODAL LOADS DUE TO PRESSURE
36 3438 36 3 38 34 313 301 35 336 31 3 30 36 3 3 3056 38 34 34 30 3636 3 3 36 34 36 3 T 3436 35 3 3 36 b 36 343 36 34 34 36 3 36 6 5 36 3638 3
COMMON WORMX (3. 24). GVALU. DJACE
DIMENSION BMATX(5,45), COORD(MPOIN, 8}, ELOAD(MELEM, NEVAB ),
LNODS(MELEM, 9), POSGP(3), PREMX (2, 9), SHAPE (3, 9},
THICK(MPOIN), WEIGP (5}, DICOS (3, M3POI), GMATX (2, 43)
ZETA = CFACE
NBORP = 2
CALL FUNC (BMATX, SHAPE, THICK, NBORP, NNODE, ZETA, MELEM,
COORD, DICOS, LNODS, IELEM, MPOIN, M3POI, GMATX)

EVALUATE THE PRESSURE AT SAMPLING POINTS KPRES = 0,1 OR
ACCORDING AS PRESSURE IS U. D, HYDROSTATIC, OR SPECIFIED AS NDDAL
COORDINATES

IF(KPRES. £Q. 0) GO TO 20

IF(KPRES. EQ. 2) GO TO 10

WORMX (3, 1) = WORMX(3,1) - SURFA

PRESS = PREVA*NORHX(B:l)

IF(PRESS GE. 0. 0) GO 7O 25

N
Q0w

DO 15 INDDE =1, 8
NGASH = IABS(LNODS(IELEM, INODE))

SET UP ARRARY OF NODAL PRESSURE: ROW 1 ROP, ROW 2 BOTTOM
PREMX (1, INODE) = COORD(NGASH, 4)
PREMX (2, INCDE) = COORD(NGASH, 8)

GISH = ((1 O#ZETA)#PREMX (1, INODE)+(1. O-ZETA)*PREMX (2, INODE))/2.0
PREVA PREVA#GISH#SHAPE (1, INODE)

5
! PRESS = PREVA

: GMULT

' CALCULATE CONSISTENT NODAL LOADS

WEIGP (IGAUS) #WEIGP (JGAUS) #CFACE®*PRESS
DO 43 INQDE =1, NNODE

IPOIN = IABS(LNODS(IELEM, INODE))
QVALU = ~GMULT#SHAPE (1, INODE)*DJACB
CALL VECT(7,21, 0,3}
DO 30 I =1,3
IPOSI = (INODE-1)#3+1
ELOAD(CIELEM, IPOSI )=ELOAD(IELEM, IPOSI)+WORMX (I, 21)
QVALU = ZETA#THICK(IPOIN)/2.0
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CALL SINGOP(21,1)

NPOSI = (IPOIN-1)%3
DO 40 I =1.2
JPOSI = (INODE-1)#35+(I+3)

NPOSI =NPOSI+1
DO 32 K =1.,3
WORMX (K, 24) = DICOS(K,NPOSI)
CALL VECT(21,24,0, 1)
IF(I. EG.2) GO 7O 35
GVALU = -GVALU
ELOADCIELEM, JPOSI} = ELOAD(IELEM, JPOSI) + QVALU
CONTINUE
CONTINUE
RETURN
END

SUBROUTINE RESTR
SUBROVUTINE RESTR(ASDIS, EFFST, ELDAD, LNODS,
MATNO, MELEM, MMATS, MPOIN, MTOTG, MTOTV,
NDOFN, NELEM, NEVAB, NGAUS, NNODE,
NPROP, NSTRE, POSGP, PROPS, STRSG,
TDISP, WEIGP, EPSTN, KUNLO: AMATX, DMATT,
THICK, MLAYR, NLAYR, LARGE)
3 30363 T 34 T 0 3 3 36 303 34 38 FE 36 34 3636 3 36 36 3F T 34 36 36 36 3 3 34 3 30 3 36 6 36 30 36 36 36 3F 36 36 38 38 3 56 3 3 3%
THIS SUBROUTINE REDUCES THE STRESSES TO THE YIELD SURFACE AND
EVALUATES THE EGUIVALENT NODAL FORCES
34363434 430 336 3 22 2 30 334 34 T30 4 33 23030 3 20036 5 03 F0 30 3 3B I SHIE I 3H I 336 I T A NN
DIMENSION ASDIS(MTOTV), AVECT(3), BMATX(S, 43),
DMATT (3, 3, MMATS ), DVECT (3}, EFFST(MTOTG) , ELDIS(43),
ELOAD(MELEM, NEVAB), GVECT(S), LNODS (MELEM, 2),
MATNO (MELEM, MLAYR), POSGP (3), PROPS (MMATS, NPROP ),
DESIG(3), SIGMA(S), SGTOT(S5), ETDIS(45),
STRES(3), EPSTN(MTAOTG), TRDISP(MTOTV), THICK(MPOIN),
STRSG(S, MTATG), WEIGP(3),
AMATX (2, MMATS ), GMATX (2, 43)
REWIND R

DO 5 IELEM = 1, NELEM

DO S5 IEVAB = 1, NEVAR
ELOADCIELEM, IEVAB) = Q0. 0
KUNLO = O

KGAUS = O

WRITE(S, #) ‘STARTS PROCESS IN RESTR'
LOOP OVER EACH ELEMENT

DO 210 IELEM = 1, NELEM
IDENTIFY THE DISPLACEMENTS OF THE ELEMENT NODAL POINTS

JPOSI = O

DO 10 INQDE = 1, NNODE

LNQDE = IABS(LNODS(IELEN.INODE))

NPOSN = (LNODE-1)#NDOF
DO 10 IROFN =1, NDDFN
NPOSN = NPOSN + 1

JPQSI = JPOSI + 1

ELDIS (JPOSI} = ASDIS(NPOSN)

ETDIS (JPOSI) = TDISP(NPOSN)
CONTINUE

KELGS = O

ENTER LOOPS OVER EACH SAMPLING POINTS

WRITE(6, #)’ ‘
WRITE (&, #) STRESS gouTPUT
WRITE(&, #) ‘ ‘

HRITE(&; *) " DOF‘, * sIexX ‘. SIGY ! 8IGZ

TOUXY ‘! TOUYZ ‘

DO 203 IGAUS = 1, NGAUS

DO 203 JGAUS = 1, NGAUS

DO 200 ILAYR = 1, NLAYR

LPROP = MATNO(IELEM, ILAYR)
UNIAX = PROPS(LPROP, &)
HARDS = PRCPS(LPROP 7)
KGAUS = KGAUS +

KELGS = KELGS +1

L e e e et
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EPSTN (KGAUS) = ABS(EPSTN(KGAUS))
READ(8) BMATX, GMATX, DVOLU

CALL SUBRIUTINE WHICH SETS UP —-BMATX— TAKING INTO ACCOUNT
THE GEOMETRIC NON-LINEARITY

IF(LARGE. EQ. 1) CALL LDISP(BMATX.GMATX,ETDIS, NEVAB)

NOW PROCEED TD CALCULATE STRESSES FROM STRESS = DMATX#BMATX®ELDIS
FIRST STORE IN GASH VECTOR GVECT THE PRODUCT BMATX#ELDIS
DO 30 IDDFN =1, NDOFN
GASH = QO
Da 235 IEVAB =1, NEVAB
GASH = GASH+BMATX(IDOFN, IEVAB)#ELDIS(IEVAB)
GVECT(IDOFN) = GASH

CALCULATE THE FIVE LOCAL STRESSES IN THE ORDER XX.YY, XY, XZ,YZ
DO 50 ISTSE = 1, NSTRE

GASH =

DO 45 JSTRE = 1,NSTRE
GASH = GASH + DMATT(ISTRE.: JSTRE: LPROP ) #GVECT (JUSTRE)
STRES(ISTRE) = GASH

FORMAT(/1X, 13, 1X, SE14.7)
WRITE (&, 13) ISTRE, STRES(1), STRES(2). STRES(3), STRES(4), STRES(3)

CONTINULE
CONTINUE
CONTINUE
WRITE(S, #) ‘###IN RESTR COMES UP TO REDUCE STRESSES’
RETURN
GO TO 11101
REDUCE STRESSES TO THE YIELD SURFACE FOR YIELDED GAUSS POINTS

PREYS = UNIAX + EPSTN(KGAUS)#HARDS
DO 150 ISTRI = 1,NSTRE
DESIG(ISTR1) = STRES(ISTR1)

SIGMA(ISTR1) = STRSG(ISTR1, KGAUS)+STRES(ISTR1)
CALL INVAR(AMATX, SIGMA, LPROP, MMATS, YIELD)
ESPRE = EFFST(KGAUS) - PREYS

IF(ESPRE.GE. O) GO TO 35S

ESCUR = YIELD - PREYS
IF(ESCUR.LE. 0. 0) GO TO &0
RFACT = ESCUR/(YIELD-EFFST(KGAUS))
GO _TQ 70
ESCUR = YIELD - EFFST(KGAUS)
IF(ESCUR. LE. 0.0) GO TO 60
RFACT = 1.0
MSTEP = ESCUR#8. O/UNIAX + 1.0
ASTEP = MSTEP
REDUC = 1. O-RFACT
DA 80 ISTR1 = 1,NSTRE
SCGTOT (ISTR1)=STRSG(ISTR1, KCAUS)+REDUC*STRES(ISTR1)
STRES(ISTR1) = RFACT#STRES(ISTR1)/ASTEP
DO 90 ISTEP =1, MSTEP
CALL INVAR(AMATX, SGTOT, LPROP, MMATS, YIELD)
CALL FLOWS(ABETA, AVECT, DVECT, LPROP, MMATS, NPROP, PRUOPS,
SGTOT, AMATX, DMATT)
AGASH = 0.0
DO 100 ISTR1 = 1,NSTRE

AGASH = AGASH + AVECT(ISTR1)#STRES(ISTR1)
DLAMD = AGASH *ABETA
IF(DLAMD. LT.0.0) DLAMD = 0.0
BGASH = 0.0
DO 110 ISTR1I = 1,NSTRE
BGASH = BGASH +AVECT(ISTR1)#SGTOT(ISTR1)

SGTOT(ISTR1)=SGTOT(ISTR1)+STRES(ISTR1)-DLAMD*DVECT(ISTR1)
Engm;%ﬁch)=EPSTN(KGAUS)+DLAHD*BGASH/YIELD
CALL INVAR(AMATX, SGTQT, LPROP, MMATS, YIELD)
CURYS = UNIAX+EPSTN(KGAUS)*HARDS
BRING = 1.0
IF(YIELD. GT. CURYS) BRING = CURYS/YIELD
DO 130 ISTR1 = 1, NSTRE

STRSG(ISTRI.KGAUS) = BRING*SGTOT(ISTR1)
EFFST (KGAUS) = BRING#YIELD
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ALTERNATIVE LOCATION OF STRESS REDUCTION LOOP TERMINATION CARD
CONTINUE

GO 7O 190
DO 180 ISTR1 = 1,NSTRE
STRSG(ISTR1., KGAUS) =
EFFST (KGAUS) = YIELD
IF(EPSTN(KGAUS). EQ. O.

STRSG(ISTR1, KGAUS)I+DESIG(ISTR1)
0. 0R. ESCUR. EQ. 0.0) GO0 TO 190

EPSTN (KGAUS) = —-EPSTN(KGAUS)
KUNLDO = KUNLO + 1
CONTINUE

CALCULATE THE
ELEMENT NODES
MGASH = O

EQUIVALENT NODAL FORCES AND ASSOCIATE WITH THE

DO 140 INODE = 1, NNODE
DO 140 IDOFN = 1, NDOFN
MGASH = MGASH + 1

DO 140 ISTRE = 1, NSTRE
ELOAD(IELEM, MGASH) = ELOAD(IELEM, MGASH)+BMATX(ISTRE, MGASH) #
STRSG(ISTRE, KGAUS ) +DVOLU
CONTINLE

SUBROUTINE SFR1

SUBROUTINE SFR1(W, G, H)

I TR TS A R 32 3 3 3 33 T8 3E I IR IS 3 I N
PARABOLIC SHAPE FUNCTIONS AND THEIR FIRST DERIVATIVES FOR
8-NODE ELEMENT PLUS THE CENTRAL HIERARCHIAL FUNCTION

G AND H DENOTE THE XI AND ETA VALUES AT THE POINT CONSIDERED
33433 NN H T T I 3336 3 32 IS 3 ISR 3 I
DIMENSION W(3, 9)

GG = G=*G

GH =
HH =

= ( 1. +GH+GG+HH-GGH-GHH) /7 4.
= (1.—H—GG+GGH)/2.

= .—GH+GG+HH—GGH+GHH)/4.
= (1 +G—HH-GHH) /

= (—‘.+GH+GG+HH+GGH+GHH)/4.
= (1. +H~GG=GGH) /2.

= (-1. =GH+GG+HH+GGH—-GHH) 7 4.
= (1 -G-HH+GHH) /2.

= 1. 0-GG-HH+GG#HH

= (H+G2-GH2-HH) 74

= ~G+GH

= (—H+G2-GH2+HH) /4.

= (1. —HH)/2.

= (H+G2+GH2+HH) /4.

= =G-GH

= (~H+G2+GH2-HH) /4.

= (=1+HH) /2.

= —~G2#(1. O-HH)

= (G+H2-GG-GH2) /4.

= (=1.+GG) /2.

= (~G+H2-GG+GH2) /4.
= =H-GH

= (G*HQ*GG+GH2)/4‘
= (1. -GG)/2.

= (;§+H2*GG GH2) /4.
= ~-H2*(1. 0-GG)

PRI N N S RN N R R
DIONC QLW YONCNLWN=ODBNCURWN- I
L P Nt P N N NP b Nt o P NP N Nt Nt Nl NP P Nt Nt N St b v

P2 b 2p 3p 30 33 2P b 2b 2P 20 30 2 3 2P 2P P 2P 2p 2P 3 2P 2P 2P 2 2 3 2]
HWWWLWWWWLWLWANNIRNRINARIRIPINY 4 14 1= 1= 4= 1=t s 4 14 )

MAAAAAAAAAAAAAAAAAAAAAAAAA/\AI

END
SUBROUTINE SINGOP
SUBROQUTINE SINGOP (N1, NOPN)
A2 R 222 SR o 22 2222 R 2RSS I AL IS AL LT LT X R YT LT L SRS
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xECTORSIOR UATRIX MANIPULATIONS INCLUDING SINGLE SPACE

OPN = MULT

NOPN = 2, NORMALISE VECTOR
NOPN = 3, TRANSPOSE MATRIX
NOPN = 4, FIND VECTOR SQUARED

NOPN = 3, FORM UNIT DIAGONAL MATRIX IN N1
36 343635 T34 3 3 35 3438 34 3F 3 3636 5 3 34 3 I 36 3 3 36 36 3 36 3H 30 3 T 36 3433 3 34 3 3 T I 38 I 36 I 4 3 3 I 3634 3 W 6 %
COMMON WORMX (3, 243}, GVALU, DJACB
WRITE(40, %) 'ENTERS SIGNOP AND RECEIVES THE FOLLOWING
N1.NOPN,FROM VECT'
NRITE(40.*)'N1 NDPN sy N1, NOPN
GO TO (1,2,3,4,35),NOP
CALL VECT(NI N1, O, 3)

RETURN
CALL VECT(NL,N1,0,2}
RETURN
WRITE(4Q, ®) 'NOPN = 7, NOPN, "‘Ni=", N1
CALL MATM(N1, N1, 0, 5)
RETURN
CALL VECT(N1,N1,0,1)
RETURN

N2 = N1 + 2
DO 12 J = NI, N2
DO 11 I =1,3

WORMX(I,J» = Q.0
II = II+1
WORMX(II.,J} = 1.0
RETURN
END

—— " . — =1 = ot St o 0 T e W R o . ot e s i ——

SUBROUTINE STIFF(EPSTN, ESTIF, KITER, LNODS, MATNG,
MELEM, MEVAB, MMATS, MPOIN, MTOTG, NDOFN,
NELEM, NEVAB, NGAUS, NNODE, NPROP,
NSTRE.: POSGP., PROPS, STRSG, WEIGP, AMATX,
DMATT., MLAYR, NLAYR., THICK.,
TDISP, MTOTV, LARGE)
3503 b3 3 oF S 3R S S 3 36 3 302 36 30 3030 34 36 3 363 34 3098 36 FHE 0 3130 36 9 3 3 IH 3 I 3
THIS SUBROUTINE EVALUATES THE STIFFNESS MATRIX FOR EACH
ELEMENT IN TURN
5 3 3b 3F 3 b 34 B 3t I S35 34 38 30 IE 3 31 3 3830 T 3 38 30 30 3 3 303 I3 I T 3 I RN
DIMENSION BMATX(S,45), DBMAT(5,43), DMATX(S, ),
ESTIF (MEVAB, MEVADB) . LNODS (MELEM, ), MATNO(MELEM, MLAYR),
POSGP (3), PROPS(MMATS, NPROP ), AMATX (9, MMATS ),
STRES(3), THICK(MPOIN), WEIGP (5), EPSTN(MTATG),
STREG(I, MTATG), AVECT(3), DVECT(3), DMATT (3, 5, MMATS),
TDISP(MTOTV), ETRIS(45), GMATX(2, 43)
REWIND 1
REWIND 8
KGAUS = ¢

LOOP OVER EACH ELEMENT

DO 110 IELEM = 1, NELEM
JgggIUP SHE ELEMENT DISPLACEMENT VECTOR -ETDIS-
DO 10 INQDE = 1, NNODE
LNODE = IABS(LNODS(IELEM, INODEZ))
NPOSN = (LNODE-1)#NDOFN
DO 10 IDOFN = 1, NDOFN
NPOSN = NPOSN + 1
JPOSI = JPCSI + 1
ETDIS(JPOSI) = TDISP(NPOSN)

DO 20 IEVAB = 1, NEVAB

DO 20 JEVAB = 1, NEVAB
ESTIF(IEVAB, JEVAB) = 0.0
KGASP = O

INITIALIZE THE ELEMENT STIFFNESS MATRIX

DO 103 IGAUS = 1, NGAUS
DO 103 JGAUS = % NGAUS

NLA
LPROP = NATNO(IELEH,ILAYR)
KGASP = KGASP -
KGAUS = KGAUS + 1
READ(8) BMATX, GMATX, DVOLU
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CALL SUBROUTINE WHICH SETS UP —-BMATX- TAKING INTO ACCOUNT
THE LARGE DIQPLACEMENTS
IF(LARGE. EQ. AND. KITER. GT. 2)
cAaLL LDISP(BMATX GMATX, ETDIS, NEVAB)
IF(KITER. EQ. 2)G0 TO 80
IF(EPSTN(KGAUS). LE. 0. 0) GO TO 80
CALCULATE THE ELASTO-PLASTIC -D- MATRIX

DO 30 ISTRE = 1.NSTRE
STRES(ISTRE) = STRSG(ISTRE, KGAUS)

CALL FLOWS(ABETA: AVECT, DVECT: LPROP. MMATS, NPROP. PROPS,

STRES: AMATX, DMATT)

DO 70 ISTRE = 1, NSTRE

DO 70 JSTRE = 1, NSTRE
DMATX(ISTRE, USTRE) = DMATT(ISTRE, JSTRE, LPROP)—-ABETA#

DVECT(ISTRE)#DVECT(JSTRE)

WRITE(30,#) ((DMATX(IST,JST}, JST=1, NSTRE), IST=1, NSTRE)
WRITE(30, %) 'VALUE OF NSTRE=‘, NSTRE

CALCULATE THE PRODUCT OF D MATRIX AND B MATRIX

DO 33 ISTRE = 1,NSTRE
DO 353 IEVAB = 1, NEVAB
D3MAT (ISTRE, IEVAB) = 0.0
DO 39 JSTRE = 1, NSTRE
DBMAT (ISTRE, IEVAR) = DBMAT(ISTRE, IEVAB)+DMATX(ISTRE, JSTRE)#
BMATX(JSTRE, IEVAB)
CONTINUE

GO TO <70

CONTINUE
DO 85 ISTRE = 1,NETRE
DO 83 IEVAB = 1, NEVAB

DBEMAT (ISTRE, IEVAB) = 0.0
DO 85 JSTRE = 1, NSTRE
DBMAT(ISTRE, IEVAB) = DBMAT(ISTRE, IEVAB)+

DMATT (ISTRE, JSTRE, LPROP } #BMATX (JSTRE, IEVAB)

WRITING BGMAT FOR TEST ON UNIT 30
WRITE(30,%) "BGMAT -
WRITE(30,666) ((BMATX(I,J):.J=1,43}),1I=1,3)
FORMAT(1X, SE14. 7/1X, SE14. 7/1X,. SE14. 7/1X, SE14. 7/1X, SE14. 7

/iX,5E14. 7, /71X, 5E14. 7, /71X, SE14.7/1X, 3E14. 7)
WRITE D MATIRX ONTO 30 FOR CHECK ONLY
WRITE(30, #) ‘DMATT
WRITE(3C, 777) ((DMATT(I, J: 1),Jd=1,5),1I=1,3)
FORMAT(1X, SE14. 7)

CALCULATE THE ELEMENT STIFFNESS

DO 40 IEVAB =1, NEVAB
DO 40 JEVABR = IEVAB, NEVAB
DO 40 ISTRE = 1. NSTRE
ESTIF(IEVAB, JEVAB) = ESTIF(IEVAB, JEVAB)+BMATX(ISTRE, IEVAB)#
DBMAT(ISTRE, JEVAB)#DVOLU

CALL SUBROUTINE WHICH CALCULATES THE GEOMETRIC MATRIX —GEMTX-
WRITE(S, #) "#uaetnCALLIN GEOME##itit3t3tt

’

CALL GEOME(ESTIF, GMATX, STRSG: MEVAB, NEVAB, MTOTG, KGAUS, DVOLU)

WRITE(S, #) ‘#nnnntxtdCOMING QUT OF GEOMEH##%4t 1
CONTINUE
CONTINUE
CONTINUE
CONTRACT THE LOWER TRIANGLE OF THE STIFFNESS MATRIX
DO &0 IEVAB = 1.NEVAB
DO &0 JEVAB = NEVAB
ESTIF(JEVAB,IEVAB) = ESTIF(IEVAB, JEVAB)
CONTINUE

WRITE(20,%) ‘ESTIF(22,22',ESTIF(22, 22)
WRITE(20,%#) ‘ESTIF(27.27’,ESTIF(27,27)
STORE THE STIFFNESS MATRIX FOR EACH ELEMENT ON DISC FILE

WRITE(1) ESTIF
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CONTINUE
PO 771 ItM = 1,2

WRITE(30O,#) ‘ELEMENT NO. = ‘, ILM, MEVAB
WRITE (30, %) ((ESTIF(I.J),J=1,45), 1I=1,493)
CONTINUE

RETURN

END

SUBROUTINE VECT
SUBROUTINE VECT(NIL, N2, N3, NOPN)
IR R E A R WA A TN T I3 IR

VECTOR MANIPULATIONS

NOPN = 1, GVALU BECOMES SCALAR PRODUCT OF COL. N1 AND N2
NOPN = 2, NORMALISE N1 INTDO N2

NOPN = 3, MULTIPLY N1 BY GQVALU, PLACE IN N2

NQPN = 4, N3 BECOMES VECTOR PRODUCT OF N1 AND N2

NOPN = 5, N3 RECOMES VECTOR N1 + VECTOR N2:#QvAaLU

AR e s s e T L L 2 L DE S R L S P S s L Lt S )
COMMUON WORMX (3, 243, GVALU, DJACOB

WRITE(S, =} ... ..., ENTERS VECT. ... . .. ‘

WRITE (S, #) “N1, N2, N3, NOPN ", N1, N2, N3, NOPN

DO 1101 I =1,N1

WRITE(S, ). .. .. WORMX (I, N1)Y. .. 7 WORMX (I, N1)
CONTINUE

Il = N1

%? TDN;I 2 3, 4, 3), NOPN

WRITE(S, #) "=———— NOPN=, 11, N1, N2, NOPN, I1, N1, N2

WRITE(S, #)} “WORMX“X... ", WORMX(1,N1), WORMX (2, N1), WORMX (3, N1)

WRITE(S, %} ‘WORMX“S. . I, 11/, WORMX(1, I1), WORMX(2,I1), WORMX(3,I1)
QVALU = 0.0

PO 10 I =1.3

GvaLl = QVALU + WORMX(I,N1)*WORMXC(L, I1)

GO TO (15, 156), NOPN

IF(QVALU. NE. O. OGO TO 18

WRITE (&6, 17)

STSSRMAT(IQH NULL VECTOR)

EXECUTINON IS TERMINATED WHEN A VECTOR IS NULL

QvALU = 1. Q/SQRT(GVALU)

Do 12 I =1,3

WORMX (I, N2) = WORMX (I, N1)#QVALU
RETURN

“ =3

00 13 1 =1.3

J = &-I-K

WRITE(S, %) I,J,K. .. I,Jd,K, N1, N2, N3

WORMX (I, N3) = NDRMX(J,NI)*NDRMX K.NQ)—NORMX(K:Nl)*NORMX(J.NZ)

&RIT%(SI*)’&&&&&& WORMX (I, N3) IN VECT &2&%% ‘%, WORMX (I, N3)
RETURN

DO 14 1 =1,3

WORMX (I, N3) = WORMX(I,N1) + QVALURWORMX (I, N2)

ENgETURN

—— — > 0 o o —— —— ———— - — " o T — — o S T

SUBROUTINE WORKS
SUBROUTINE WORKS(COORD, DICOS, LNODS: THICK, MELEM, MPOIN, NPOIN, M3POI)
2 3 T3 35138 38 3230 38 3 38 30 36 35 3 36 2638 30 35 35 36 43 3 3535 36 96 36306 36 3638 36 38 46 396 3690 2638 95 36 36 36 96 36 96 26 96
THIS SUBROUTINE SETS UP THE THICKNESS AND ORTHOGONAL
SYSTEM OF AXES AT EACH NODAL POINT
26 36 34 36 35 3 36 2% 2 3040 3 30 35 36 T 3 34 3 I 3T 36 36 3 3 34 3 34 36 20 I I 338 36 I I 3 3 W 3 3 3 36 3 30 3034 6 36 3 636 I 36 4 6%
DIMENSION COORD(MPOIN, 8), LNODS(MELEM, ?), THICK(MPOIN),

DICOS(3, M3POI)
COMMON WORMX (3, 243, GVALU, DJACB

TOP AND BOTTOM CO-ORDINATES ARE SET UP AT COLUMNS -~1- AND -2-

DO 30 IPOIN = 1, NPOIN
WRITE(3, 3101) IPOIN
FORMAT(/ '+, 12)
DO 10 =1,3
WORMX (I, 1) = COORD(IPOIN, I
WORMX(I.,2) = COORD IPDIN:I+4)
NGASH = 3
NGISH = NGASH + 2

(]
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QVALU = -1 .0
VECTOR V-3 IN COLUMN NGISH
CALL VECT (1, 2, NGISH, 5)

SETS~QVALU EQUAL TO SCALAR PRODUCT OF THE VECTOR (V-3)#(V-3)

WRITE(S, ) 'START ENTERING SIGNOP. .. ........... ‘
CALL SINGOFP(NGISH: 4}
THICK (IPOIN) = SGRT(QVALU)

CREATES AND NORMALISES AT EACH NODE THE VECTORS V-1,Vv-2 AND V-3

CaLL FRAME(NGASH, NGISH, O, 1)
DO 354 I =1.,3
WRITE(S, #) ‘—————- WORMX—~—=", WORMX (I, 1}, WORMX(I, 2}
CONTINUE

SET UP THE DIRECTION COSINE MATRIX OF THE LOCAL AXES AT EACH

POINT IN CRDER V~1,V-2,V-3

NPOSI
Dg 20
Do 20
JPOSI
DICQO
CONT
RETURN
END

¢
NUE

()
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SUBRQOQUTINE RESTAR
SUBROUTINE RESTAR(EFFST, ELDAD, EPSTN, MELEM, MEVAB, MTOTG,
MTOTV, MVFIX, TDISP, TLOAD, TREAC, STRSG,
TFACT, KINGS)
3HTE A B S E HSE  EIESE 0 S S 26 3 3 3 36 38 3 5E 303 63 330 3 330 38 40335 30 36 34 30 4 3 036 3 S0 30 4 30 3¢
THIS SUBROUTINE RECORDS ONTO TAPE 12 THE DATA NEEEDED TO
RESTART THE PROBLEM
H %A S T3 IE I 3 I3 NI 38 363 SE 3 3663 T30 38 3 3 I 46 3090 3030 3 334 I 303 6 3 3 e 3 3
DIMENSION EFFSET(MTOTV), ELOAD(MELEM, MEVAB), EPSTN(MTOTG),
TRISR(MTOTV), TLOAD(MELEM, MEVAB), TREAC(MVFIX, 5},
STRSG(3, MTOTG)

REWIND 12

WRITE(12) RINGS, TFACT, EFFST, ELOAD, EPSTN
WRITE(12) TDISP, TLOAD, TREAC, STRSG
EggURN

SUBROUTINE ZERO

SUBROUTINE ZERO(EFFST, ELOAD, EPSTN, MELEM, MEVAB, KINGS,
MTOTG, MTOTY: NDOFN, NELEM, NEVAB, NREST,
NSTRE, NTOTG, NTATYV., NVFIX, MVFIX: STRSG,
TDISP, TFACT, TLOAD, TREAC)

HOH I FE 33 38 I 3 3 SE 3 I 3 3 36 3 3 30 36 30 58 36 3 6 30 34 3430 4 34 3 30 34 2630 3 6 3 334 30 33 3F 43 %

THIS SUBROUTINE INITIALISES VARIOUS ARRAYS TO ZERO

36 Sh At 3303 2535300 00 S IE S I3 630 3 T 31 36 36 SHIE I H 3 3 36 36 3 3 363024 36 303 3036 3034 03024 3430

DIMENSION ELOAD(MELEM, MEVAB), STRSG(S3, MTOTG), TDISP(MTOTV),
TLOAD (MELEM, MEVAB), TREAC (MVFIX, 3), EPSTN(MTATG),
EFFST(MTOTG)

WRITE(50.#) "VALUE OF NEVAB WITHIN ZERO=‘, NEVAB
IF(NREST EG. 1) GO TO 70
KINGS = O
TFACT = 0.0

DO 30 IELEY = 1,NELEM
DO 30 IEVAB = 1, NEVAB
ELOAD(IELEM, IEVAB) = 0.0
TLOAD(IELEM, IEVAB) = 0.0
DO 40 ITAQTV = 1, NTOTV
TDISP(ITOTV) = 0.0
DO 350 IVFIX = 1,NVFIX
DG S5C IDOFN = 1, NDOFN
TREAC(IVFIX, IDOFN) = 0.0
DO &0 ITOTG = 1,NTOTG
EPSTN(ITOTG) = 0.0
EFFST(ITOTG) = 0.0
DO 60 ISTR1 = 1, NSTRE
STRSG(ISTRL, ITOTG) = 0.0
G0 TO 80
REWIND 12
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READ( 12) KINGS., TREACT, EFFST, ELCAD, EPSTN

READ( 123 TDISP, TLOAD, TREAC. STRSG
CONTINUE

RETURN

END

SUBROUTINE SHEARC
SUBROUTINE SHEARC (MATNO, MELEM, MLAYR, PROPS, MMATS, NPROP,
COEFE, NLAYR, DMATT)
333036 35 3 o TR SIS I T I I 30T 03I I 368 S T I N HH R
CALCULATES THE SHEAR CORRECTION FACTOR FOR THE CASE OF
LAMINATED COMPOSITE STRUCTURES
34 3 33 3435 53 G R 30 3 3 35 2 3 30 303 0 2 3 3 S0 30 3 363636 3030 b e 38 36 33630 3 36 30 T 3 S IE IR
DIMENSION RFACT(2), TRLOW(2!, UPTER(2!, GBARF (2}, MATNO (MELEM, MLAYR),
COEFE(2), ZETAL1(2)., ZETA2(2), DINDX(2), PROPS (MMATS, NPROP),
GINDX(2), DIFF2(2), DIFF3(2}, SUMLA(2), DMATT(3, 5, MMATS ),

DIFF3(2)
INITIALISE SOME ARRAYSC
Do 10 1 = 1,2

SUMLA(I) = 0. C

RFACT(I) = 0.0

GBARF (I) = 0.0

UPTER(I) = Q.0

TRLOW(I) = 0.0
COEFE(I) = 0.0

CALCULATE THE POSITION OF THE NEUTRAL AXIS

DSUNMM = Q. O

DO 13 ILAYR = 1,NLAYR

LPROP = MATNO(1, ILAYR)

DZETA = PRCPS(LPROP, 3)

ZHEIG = DSWMM+DZETAS2.

DO 14 I = 1,2

DINDX (I) = DMATT (I, I.LPROP)

UPTER(I) = UPTER(I)+DINDX(I)#ZHEIG#DZETA
TRLOW(I)Y = TRLOW(I)+DINDX(I)*DZETA
DSUMM = DSUMM+DZETA

PO 16 I =1,2
ZETA2(I) = -UPTER(I)/TRLOW(I)

CALCULATE THE SHEAR CORRECTION FACTOR
DO 20 ILAYR = 1, NLAYR
LPROP = MATNO(1, ILAYR)
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DIFF1 = PROPS(LPROP, 3)
INDEX = 10
DO 20 I =1.2
ZETA1 (I) = ZETA2(I)
ZETA2 (1) = ZETA1(I)#DIFF1
DIFF2(1) = ZETA2(I1)##2-ZETAL1(I)#»2
DIFF3(I) = ZETA2(I)##3-ZETAL1(I)#x%3

. DIFF5(1) = ZETA2(I)##5-ZETAL1(I)##5
DINDX (I) = DMATT(I, I, LPROP)

. GINDX (1> = PROPS(LPROP., INDEX)
RFACT (I) = RFACT(I) + DINDX(I)®#DIFF3(I})/3.
GBARF (1) = GBARF(I)+GINDX(I)*#DIFF1/2.
TERM1 = SUMLA(I)#SUMLA(I)®#DIFF1

t TERM2 = DINDX(I)*(ZETAL(I)#%4)#DIFF1/4.
TERM3 = DINDX(I)*DIFF3(I)/20.
TERM4 = —DINDX(I)®ZETAL1(I)*ZETAL1(I})%#DIFF3(I)/6.
TERMS = SUMLA(I)*ZETAL1(I)#ZETAL1(I)*DIFF1

l TERM&6 = -SUMLA(I)#DIFF3(I)/
COEFE(I} = COEFE(I)+(TERM1+DINDX (I )#(TERMZ2+

TERM3+TERM4+TERMI+TERM& ) ) /GINDX (1)

INDEX = INDEX + 1
SUMLA(I) = SUMLACI)-DINDX(I)#DIFF2(I})/2.

Z CONTINUE
DO 30 I =1,2

30 COEFE(I) = RFACT(I)#RFACT(1)/(2. #*GBARF(I1)*COEFE(I))
RETURN

! END

: MAIN MASTER OR CONTROLLING SEGMENT
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PROGRAM PLSHELL (. ... . ... }
PROGRAM PLSHELL
(INPUT, QUTFUT, TAPES=INPUT, TAPEL=QUTPUT,
TAPELl, TAPEZ2, TAPES, TAPE7, TAPESB, TAPE12)
35 FESE3H 63 3 T 9 S S I 30 303 H 3363 63 T 363 3036 T30 3 36 30 434 3 36 36 3 30 36 4 I H I
PROGRAM FOR ELASTO-PLASTIC ANALYSIS OF ANISOTROPIC SHELL
STRUCTURES USING GQUADRATIC DEGENERATE SHELL ELEMENTS(8-NODE
HETERGOSIS AND 9-NODE) AND A LAYERED APPROACH. ACCOUNTING FOR
LARGE DISPLACEMENTS AND SELECTIVE INTEGRATION(TRANSVERSE
SHEAR TERMS). THE ANISOTROPIC PARAMETERS REMAIN CONSTANT
DURING THE FLOW. RESTART FACILITIES INCLUDED
S 33 T3 3 T 330 5 I F 3 3 38 S5 3 3 36 3 SF 3R S 36 30 38 38 3 5 3 34 38 36 34 T 36 3 36 36 30 3 36 3 3 3 3 SE 3
DIMENSION ASDIS{(S00), COORD(1Q0, 8}, ELOAD(20, 43), EQGRHS(10),
EQUAT (73, 10), EFFST(1800), EPSTN(1800), ESTIF (435, 43),
FIXED(S00), GLOAD(795), GESTIF (28503, GRAVI(3),
IFFIX(S00), LOCEL(45), LNODS(20, ?). MATNO (20, 10),

NACVA(75), NAMEV(10), NDEST(43), NDFRO(20),
NOFIX(3&6); NOUTP(2), NPIVO(10), POSGP(3), THICK(100),
PRESC (36, 3), FROPS(5, 17}, RLOAD(20, 45}, STFOR(3500),
STRSG(3, 1800), TDISF(3500), TLOAR(20, 45}, TOFDR (300},
TREAC (36, 3), VECRV(73), WEIGP(S5), DICAS(3, 300),
AMATX (9, 5}, DMATT (S, S, §)

OPEN(UNIT=15, FILE="/ SHELL1l INP A’',STATUS = ‘OLD’}

CPEN(UNIT=S, FILE="/ SHELL OUT A, STATUS = ‘NEW")}

CPREN(UNIT=1, STATUS="SCRATCH "}

QPEN(UNIT=4, STATUS="SCRATCH "}

OQPEMN(UNIT=7, STATUS="SCRATCH ")

QPEN(UNIT=8, STATUS="SCRATCH "}
OPEMN(UNIT=12, STATUS="SCRATCH ")

PRESET VARIABLES ASSOCIATED WITH DYNAMIC DIMENSIONING

CALL DIMENIMBUFA, MELEM, MEVAB, MFRON, MMATS, MPOIN, MSTIF,
?ngg,MTDTV,NVFIX:NDOFN;NPRDP:NSTRE:HSPUI:
il 3

CALL THE SUBROUTINE WHICH READS MOST OF THE PROBLEM DATA

CALL INPUT(ANVEL, COORD, GRAVI, IFFIX,LNODS,
MATNO, MFRON, MELEM, MMATS, MPOIN,
MTOTV, MVFIX, NDFRO, NDOFN, NELEM, NCOLA,
NEVAE, NGAUS, NGAUZ, NMATS, NNODE, MLAYR,
NOFIX, NMPOIN, NPROP, NTOTG, NLAYR: NREST,
NTOTY, NVFIX, POSGP, PRESC, PROPS, WEIGP,
NALGO, NINCS, LARGE)

Call SUBROUTINE WHICH COMPUTES THE ELASTICITY MATRIX -D— AND
THE MATRIX OF THE ANISOTROPIC PARAMETERS
CALL MODANCAMATX, DMATT, NMATS, NPROP, PROPS, MMATS,
MATNG, MELEM, MLAYR, NELEM, NLAYR)

CREATE THE THICKNESS AND A LDCAL ORTHOGONAL SET AT EACH NODAL POINT

CALL WORKS(COORD, DICOS, LNODS, THICK, MELEM, MPOIN,
NPOIN, M2POI)
gRIgE(S,é)'+++++++++++C OMESOUTOFWORHK +++++"7
AUSE

CALL SUBROUTINE WHICH COMPUTES BMATX AND GMATX. THESE MATRICES
ARE STORED ON TAPE 8 FOR LATER USAGE

CALL BGMAT(CDORD, DICOS, LNODS, MATNO., MELEM,
MLAYR, MMATS, MPOIN, M3POI. NELEM,
NEVADB, NGAUS, NGAUZ, NLAYR, NNQDE, NPROP,
POSGP, PROPS, THICK, WEIGP )
CALL SUBROUTINE WHICH COMPUTES THE APPLIED LOADS
AFTER READING SOME NODAL DATA
326g5(5.*)’ENTERS LOADS AFTER COMING OUT OF BGMAT®
CALL LOADS(ANVEL, COORD. RLOAD. GRAVI, LNQODS,
MATNO, MELEM. MEVAB, MMATS, MPOIN, DICOS,
NELEM., NEVAB, NGAUS, THICK,
NNODE, NPROP, NSTRE, POSGP, M3POI,
PROPS, WEIGP, MLAYR, NLAYR)
WRITE(3, #)!'!1!1!'"!'"!"!'C OMESOUVUTOFLOADSES’
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INITIALISE CERTAIN ARRAYS
WRITE(SG, #) "VALUE OF NEVAB ENTERING ZERO=‘, NEVAB

CalL ZERO(EFFSY.ELOAD, EPSTN, MELEM, MEVAB, KINGS,
MTATG, MTOTV, NDOFN, NELEM, NEVAB, NREST,
NSTRE. NTOTG, NTOTV, NVFIX, MVFIX, STRSG,
TDISP, TFACT, TLOAD, TREAC)

WRITE(SC, #) "VALUE OF NEVAB COMING OUT OF ZERO=’, NEVAB
LOOP OVER EACH ELEMENT

WRITE(SQO, %) ‘NINCS =', NINCS
DO 100 IINGS = 1, NINCS

READ DATA FOR CURRENT INCREMENT

WRITE(SO, +) "VALUE OF NEYVAB ENTERING INCREM'’, NEVAB
CALL INCREM(ELOAD. FIXED, IINCS, MELEM:, MEVAB, MITER,
MTOTV: MVFIX, NDOFN, NELEM, NEVAB, NOUTP,
NOFIX, NTOTV, NVFIX, PRESC, RLOAD, TFACT,
TLOAD, TOLER, LNQDS, IFFIX, NNODE, NCOLA,
NREST, KINGS)

LOOP QOVER EACH ITERATION
KSTOP = O
KUNLGO = @

DO 3¢ ITITER = 1,.MITER
KITER=TINCS+IITER
JINCGE=TINICS-KINGS

CALL SUBROUTINE WHICH SELECTS SOLUTION ALGORITHM VARIABLE KRESL

Cal.lL ALGOR(FIXED, KITER, IITER, KRESL, MTOTV, NALGO,
NTOTV, KUNLO, KINGS)
WRITE(S, #) 'COMES QUT DF ALGOR”
WRITE(S, #) "VALUES 0OF KRESL, NALGO ‘. KRESL, NALGO

CHECK WHETHER A& NEW EVALUATION OF THE STIFFNESS MATRIX
1S REQUIRED

IF(KRESL.  EG. 1)

CALL STIFF(EPSTN, ESTIF, KITER: LNODS, MATNQ,
MELEM, MEVAB, MMATS, MPOIN, MTOTG, NDOFN,
NELEM, NEVAB, NGAUS, NNODE, NPROP,
NSTRE, POSGP, PROPS, STRSG, WEIGP, AMATX,
DMATT, MLAYR, NLAYR, THICK,
TDISP, MTOTV, LARGE)

WRITE(S, 2 “###%2COMES OUT OF STIFF#3#%##%’

MERGE AND SOLVE THE RESULTING EQUATIONS BY THE FRONTAL SOLVER
WRITE(S, ¢} ‘4#t#a2CALLING FRONT####4%

WRITE (SO, %) "KRESL., NALGO BEFORE CALLING STIFF ', KRESL, NALGO

WRITE(3Q,#) "VALUE OF NTOTY BEFORE CALLING FRONT ', NTOTV
CALL FRONT(ASDIS, ELOAD, EQGRHS, EQUAT, ESTIF, FIXED,
GLOAD, GESTIF, IFFIX, JINCS, IITER, KRESL.,
LOCEL ., LNODS, MBUFA, MELEM, MEVAB, MFRON,
MSTIF, MTOTV, MVFIX. NACVA, NAMEV, NDEST,
NDOFN, NELEM, NEVAB. NNODE., NOF I X, NP IVO,
NPOIN, NTOTV, TDISP.: TLOAD, TREAC, VECRV)

WRITE(S, #) 'START ENTERING RESTR’
WRITE(S, #) ‘#a#saunxCOMES OUT OF FRONTH®®ERtE 1

CALCULATE RESIDUAL FORCES

CalLL RESTR(ASDIS, EFFST, ELOAD, LNODS,
MATNG, MELEM, MMATS, MPOIN, MTOTG, MTOTV,
NDOFN, NELEM, NEVAB, NGAUS, NNODE,
NPROP, NSTRE, POSGP, PROPS, STRSG!
TDISP., WEIGP, EPSTN, KUNLO. AMATX, DMATT,
THICK, MLAYR, NLAYR, LARGE)

CHECK FOR CONVERGENCE
WRITE(S, #) ‘s#ataaat2CALLING CONVER #3334 88380080 7




IR

U - L —

Cal.l. CONVER(ELQAD, IITER, LNODS, MELEM, MEVAB., MTOTV,
) HCHEK, NDOFN, NELEM, NEVAB, NNODE, NTOTV,
. STFOR, TLOAD, TOFOR, TOLER)
WRITE(S, #) ‘s#taxa243%COMES QUT OF CONVERM####kH "

QUTPUT RESULTS IF REQUUIRED

IF(IITER. EQ. 1. AND. NOUTP(1}. GT. O)

CALL QUTPUT(IITER, MTOTG, MTOTV, MVFIX, NCHECK, NELEM,
NGAUS, NOFIX, NQUTP., NPOIN,
NSTRE. NVFIX, STRSG, TDISP, TREAC: EPSTN,
POSGP. EFFST, MATNG, MMATS, PROPS,
NPROF, MELEM, THICK,
MPOIN, LNODS, MLAYR, NLAYR}

IF SOLUTICN HAS CONVERGED STOP ITERATING AND OUTPUT RESULTS

IF(IITER. EG. 1. AND. NCHECK, EQ. 0} GO TO 100
IF(NCHECK. EQ. O GO TO 75
CONTINUE

KSTOP =1
CALL QUTPUT(IITER, MTOTG: MTOTV, MVFIX, NCHECK, NELEM,
NGAUS, NOF I X, NOUTP, NPOIN,
NSTRE, NVFIX, STRSG, TDISP, TREAC, EPSTN,
POSGF, EFFST, MATNO, MMATS, PROPS,
NPROP, MELEM, THICK,
MPOIN, LNODS,: MLAYR, NLAYR)
IF(KSTOP. EQ. 1) STOP

RECORD ONTO TAPE 12 THE DATA NEEDED FOR RESTART THE PROBLEM
TO NEXT INCREMENT

CAalLl RESTR(EFFST, ELOAD,EFSTN, MELEM, MEVAB, MTOTG,
MYOTV. MVYFIX, TGISP, TLOAD, TREAC, STRSG,
TFACT, IINCS)
CONTINUE
STOF
END
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A Flnlte Cell Model For 3-D Bralded Composites

Charles S. C. Lei, Abert S. D. Wang and Frank K. Ko

Presented at
Winter Meeting of ASME
Advanced Composites Processing Technology
Chicago, 11
Nov 28- Dec. 3, 1988

ABSTRACT

The macroscopic elastic behavior of 3-D braided
composites is characterized on the basis of a mi-
cromechanical analysis of a unit cell structure.
Treating & 3-D braided composite as an assembly of
individual unit cells idealized as a pin-jointed truss
in the shape of a brick, the Finite Cell model is based
on the principle of virtual work and structural truss
anslysis. The usefulness of the resultant model is
explored via parametric study and verified using the
tensile properties of carbon-carbon composites. -

explove the potential of these new material systems,
an jeal framework is meeded to link fiber
architecture and material properties to composite

_ Ma, Yang and Chou [1] assumed thé yarns in
a unit cell of a 3-D braided composite as composite

. rods, which form a parallel pipe. Strain energies due

-4 - ‘!
to yarn axial tension, bending and lateral com-
pmnonmmdaed_ .nndﬁmm:heedwithinthe
1 Castigliano's’ theorem, closed form
expressions for axial elastic md.nlinndPoisson‘-

g
E

: ratios have been derived as functions of fiber volume

'E
R
|
]

From a ‘preform processing
view, Ko et al(3] developed a “Fabric Geometric
Model" using similsr assumptions. The stiffness of a -

The results of elastic properties from the above
three models can be used as input to & generalized

yarn
_thess complex fiber architecture systems, the

ing science’ point of



“effective continuum concept can no longer provide

accurate description. It is the objective of this paper
to establish a finite cell model (FCM) which can
accommodate structures with variable unit cells and
provide a link between microstructural design and
macro-structural analysis. In complex structural
shapes such as I-beams, turbine blades, the final
structure often consists of several types of fiber
architecture,

THE FINITE CELL MODEL

structural cells with brick shape. Each individual
cell is the smallest representative volume from the
fibrous assembly. The unit cell is then treated as a
space-truss structure with the endowed rep-
resentative architecture, rather than a material with
a set of effective continuum properties.

total value of each member deformation caused by all h

the nodal displacements may be written in the
following matrix form:

-

(Q} = (al(r} (1
Q aji 8 an n
@ 82182 axm 2

q9m am1 &m2 amn rn
where [a] is called the displacement transformation
matrix which relates the member deformations to the
nodal displacements. In other words, it represents
the compatibility of displacements of a system.

The next step is to establish the force-dis-_
placement relationship within the unit cell. For a
pin-connected truss, the member force-deformation
relationship can be written as:

Q=K @

where:

AE/L

The principle of virtual work states that the
work done on a system by the external forces equals
the increase in strain energy stored in the system.
fﬂ“h:{od&l‘h?ﬁnhmddu?ﬁsthem-

forces uni Therefore, i ts
the nodal force vector, it follows that represen

(K} =

TR = QTQ ()}
where () and (g} are virtual displacement and
ion, respectively. From EQs(1) and (2), the
following equations can be derived:
(Q = [KXal(1) @ -
QT = (JTa]T - ®
and
Or TR} = ([NaIK)() ®)
2} = (K} ()]
where (R} = nodal forces

m.-[dma-diﬁmmuixoﬁhe
unit cell

{r} = nodal displacements

Using Equation 7, the nodal force and the nodal
displacements of a unit cell ‘are related. ‘l‘ht::.




. -

tem of equations for the total structural shape can be
assembled using the individual cell-relations
following the finite element methodology. A complete
listing of the terms associated with the K matrix is
given in Figure 2.

From the solution of the equations, the etress
distribution and deformation of the entire structure
under applied load can be calculated and analyzed.
To illustrate the application of the FCM, $-D braided
composites are used for this study. With basic pa-
rameters in a unit cell, such as yarn elastic modu-
lus, fiber volume fraction, yarn orientation and unit
cell dimension fully characterized, the applicability of
the FCM to predict the structursl response of
composites will be demmtuged through
parametric study and verified experimentally.

. NUMERICAL SIMULATIONS

The FCM was implemented by the use of
computer simulation. By entering the basic
parameters for & unit cell and fiber/matrix properties
to the program, the load-deformation and elastic
properties, such as elastic moduli and Poison's
ratios, of a composite can be calculated. A few
examples are employed to demonstrats the

ity of the FCM under different conditions.

. Tomymﬁijmmumﬁa‘m
fiber geometries, composites under
braiding processes are chosen. The basic parameters

slume fraction. The results demonstrats that the
composite with higher fiber volume fraction has
*igher modulus.

of composite tends to be insensitive to
braiding fiber erientation.

mwmhmuuﬁuhw

t composite with different kind of unit cells,

To do so, the positions of each unit cell should be
identified and recorded like traditional finite element
programming. Hence, a complex shaped structure,
such as 3-d braided I-beam, rotor, etc. can be
analyzed if the basic parameters of unit cells and
fiber voluma fraction are given.

EXPERIMENTAL VERIFICATION

To provide a preliminary verification of the
model, simple rectangular coupons of the 3-D braided
carbon-carbon composite were fabricated and -
characterized by tensile testing. When using a
simple ghape, as detailed in{4], the key parameter in
the braiding process is the track and column
displacements. These displacements determine the
projected orientation of fibers in the x-y plane, as well
::baﬂ'ed:ng' the overall structural geometry of the

ric.

The track/column displacements chosen for-
this study were 1/1 and /2. The notation u/v indi-
cates a track displacement of u bobbins and a column
displacement of v bobbing in one motion. The small-
est ive volume of thess fabrics, or the unit

“cell, is identified by the displacement values of w/. _

Using the FCM, the structural response of the
unit cell under applied load was examined. The
simulated results were to the experimental
data. The material used for this study was T-40
carbon fiber, with a fiber modulus of 40 Msi. The
1/8"x1"x10" 3-D braided preforms were consolidated
with carbon; the fiber volume fraction of the
composite was 35%. End tabs were adhered to the
ends of the specimens, and strain gages were applied
to the specimen surface. The tensile tests were
carried out according to ASTM Standard.

From the experimental stress-strain curves
shown in Figure 7, it can be seen that the tensile
responses of the 3-D braided Carbon/Carbon
composites are nearly linear to the point of failure.
The possible nonlinear behavior due to geometric
effect and microcracking are not evident.

For the lack of accurate measurement of fiber
volume fraction of a unit cell, a theoretical value of
35% of fiber volume fraction was used for the
numerical computation. The dimension of & unit cell
is determined from the measurements by a digital
caliper. Since the dimensions of a unit cell are
considered to be the center lines of members of the
unit cell, part of the bars lie outside the unit cell.

an aversging method for the determination of
the cross-eection areas of the bars was used. For a
unit cell dimension of HxWxT, the area of a Gber-bar
can be obtained as Af«= OSSHWT / 4(H2+W2+T2)V/2;
the area of a matrix-bar can be expressed as Apy =
O06SHWT / «(HeW+T). Here, area of each Sberber as
well as the matrix-ber are the same. Accordingly,
the elastic properties used for the unit cell are:

Ef= 40 mel ; V=035 ’
Em = 1.2 msi ; Vi = 0.65




for 1x2 unit cell, the dimension is 0.295°x 0.13"x

0.0864"
and Af=0.000852 in2 Am = 0.0010309 in2

1. Ma, C. L., Yang, J. M. and Chou, T. W., “Elastic
Stiffiness of Three-Dimensionsl Braided Textile
Stractural Composites,” Compoesite Materials:

3.

Testing and Design (Seventh Conference), ASTA
STP 893, J. M. Whitney, Ed., American Society :
Muﬁn{mﬂ Materials, Philadelphia, 1986, pp.

Yang, J. M., Ma, C. L. and Chou, T. W,, “Fiber
Incdination Model of Three-Dimensional Textile
Structural Composites,” J. of Composite
Materials, Vol 20, 1986, pp 472-484.

Ko, F. K., Pastore, C. M., Lei, C. and Whyte, D.
W., "A Fabric Geometry Model for 3-D Braid
Reinforced FP/AL-Li Composites,” Competitive
Advancements in Metals/Metalg Processing,
%MPE Meeting, Aug. 18-20, 1987, Cherry Hill,

Ko, F. K. and Pastore, C. M., “Structure and
Properties of an Integrated 3-D Fabric for
Structural ites,” Recent Advances in
Composites in the United States and Japan,
ASTM STP 864, J. R. Vinson and M. Taya, Eds.,
American Society for Testing and Materials,
Philadelphia, 1985, pp.428439.

Pigwrell, Gehamutie of o 8 Breid Ot Oull O




L4

ecollleecavscosPancedel®l
...—-«...u....h.......-
Tltlececocvcscccccevilcene
tllececcccssssscccd®lave
LY 3 O T T L A TS
B A TS 3 L PR SR
evecssceselllevel®Uacocee
eevvesveelllcseo®llcencee
ececselllcsell®consvcce?
escceslllocel®lodoccccee
Veoesesllleserllecsscnnses
eePeccesslli¥seelllcoccoe
eeencsedel®locelilecoces
eccccecse llcecillccedee
e0oeevil®oeollVtecocccvne
sesessel®lefelileconsocoe
ececeoovliceoliloecodocsoee
R S R 2 2
evelo®levcecccscnvcssncslll
eooungilevoccverrsor Joeeeelll
ISY R RRRREI TR RR P § L PIres

folefoceovosccscscreclitilocs

'“'......'..*.h..."'...

[y

'-ﬂ’ oq
.QJOC
“cﬂ‘ .q

oy N
[ .,.')
D

=547

o ~luhniten
oyl teoem
Galighyite

whee

Mgre 2, Srplialk Linting of e K Matvix Farmniated for the FOM Anadyely

Strain, %

0.2 03 04 0S5 06

8§ 3 9 8 8

¥ ‘esanig

0.0 O.1

2y
o4

01 02 a3 o4 of
S %

T 8 8
¥y 'sseng

Figere

Figure 3 The Effect Of Fiber Ceometry OC A Unit Cell

s

1Y

o4

b Flastic Behavior Along 1-1, 2-2 end 3-3 axes for
Kevier 149/Epon 628 Composite.

RgseR R e°
1931 ‘esenig

. 04 .
Strain, %
Figwme § The Effect OC Fiber Velume Fruction On Blestic Bahavier.

RN

193 ‘ssenig

Strain, %
Figure 4a Elastie Behavier Aleag 11, 2-2 end 33 Amss for

(—p— — -




Stress, Kat

(3 0..1 1‘3 ;J 04 OF 08 0.7
Strain, %
FigweTa. Experinssentul Strecs-Strain Curves of
1x1 Bralded OC Camposites.

Btreess, Kal

05 06

Figuee Th. Rxperimental Strece Streia Curves of
122 Bovided OC Campenites

—— MmN AR s

)
- ¢4

Figure 8. Boundary and Loading Coaditions of a Unit Cell.

S0
4or T
o 30F
[
o .
J <]
o) 20
1op
“' A L PENES Sy L A 1 A 1
00 Q1 02 03 04 OS5 06
Strain, %
Figure fa. Stress-Strein Curves of Experimentsl and Prediced
1x1 Braided G it
s0 -
L i ".
:2 L
s f
H] !
3 L.
« 2 o  Predicti
1 aw Experiments
Wk :
° o £ o bt o 8 o 2 o £ . 41
02 04 0.6
Strain, %

Figure b, Stress-Streia Curves OF Experimentel and
Prodicted 1x2 Bredded Composite: .




wss OGEE " z—

Finite Element Analysis of 3-D Braided Composites
Charles Lei, Yun-Jia Cai and Frank Ko

Fibrous Materials Research Center

Department of Materials Engineering, Drexel University
Philadelphia, PA 19104

ABSTRACT

A numerical method, which utilizes the computer aided geometric modelling
(CAGM) in conjunction with finite element procedures, is presented to predict
the mechanical behavior of 3-D braid composites. The CAGM, based on the
computer geometric technique and textile formation process, provides the
detailed information of the fiber architecture of 3-D braid composites. With the
fiber architecture being defined, unit cell structures can be identified and be
treated as space structures. Then, finite element procedures can be performed
on each unit cell to obtain the elastic behavior of the composites. The present
analysis includes the consideration of the interior and boundary elements of
the entire cross-section, and consideration of bending moment of the yarns,
The present model predicts a lower value of Young's modulus than that of
experimental results. Modifications will be made on how to properly represent
the matrix effect of a 3-D braid composite.

INTRODUCTION

In the family of advanced composites, 3-D textile composites have received
great attention because of their superior structural properties such as no
delamination, improved stiffness, tough..2ss in the through-thickness
direction and improved impact tolerance.(1] In developing these composites
with innovated fiber architecture, an analytic model is needed in order to
describe the load-deformation-failure properties of a composite on a
macroscale. Such a model must be developed based on the accurate description
of geometry and material interactions in the composite fiber achitecture.
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As reviewed in the papers of Rosen et al.[2] and Ko(3], the literature for the
analysis of 3-D, or X-D fibrous reinforced composites are very limited. Most of
the publications concern with the formulation and prediction of mechanical
properties of the composites. For instance, Rosen et al. [2] used the concept of
"constant stress state” to derive the average elastic constants and thermal
coefficients of a unit cell structure. Chou et al. predicted elastic moduli of 3-D
braided composites based on energy method [4] and on the modified classical
laminate theory [5], respectively. Combining textile engineering methodology
and averaging effective properties of a unit cell, Ko et al. (6] developed "fabric
geometric model” to predict the mechanical properties and failure of 3-D
composites. Following the similar considerations of volume averaging
method, Byun et al. (7] predicted elastic moduli of 2-step braid composites. The
elastic properties from the above models can be used as input to a generalized
finite element program in order to analyze complex 3D structures.

As far as the methodology is concerned, the conventional finite element
method assumes the fibrous composite to be an effective continuum which
possesses anisotropic deformation properities. Therefore, the finite element
method can be used to analyze structures of complex conformation. For
example, the well-known structural analysis programs based on the finite
element method, such as NASTRAN, ABAQUS and ANSYS, treat the composite
material structures computations in classical sense. That is, every element is
given apparent homogeneous properties in terms of the type, orientation and
stacking sequence of fibers and type of matrix. The stiffness matrix is
calculated for the model consisting of elements with equivalent properties.
Displacements, strains and internal forces of a structure are first obtained for
that model and then the stresses in the structure are calculated.

With complex fiber achitecture system such as 3-D braids, however, the
effective continuum concept can no longer provide an accurate description.
The reason is that the microstructure of such new system is much more
complicated than those found in laminated composites. Recently, Lei et al.
{8,9], following finite element procedure, developed a finite cell model (FCM) to
analyze the elastic behavior of 3-D braid composites. The FCM takes account of
the fiber achitecture of a unit cell in a 3-D braid composite and performs 3-D
structural analysis of the considered unit cell. Thus, the first step of the
analysis is to identify the unit cells in a composite. This paper presents a
methodology for the identification and classification of unit cells based on 3-D




braiding processing parameters. The identified unit cell structures form the
basis for 3-D graphic illustration of the fiber architecture and for the finite
element analysis of the 3-D preform as a structure. With the FCM, the elastic
properties and the stress-strain relationship of 3-D braid reinforced composites
are predicted and compared with experimental results.

MODELLING OF 3-D BRAID COMPOSITES

The 3-D braid composite can be regarded as an assemblage of a finite number
of individual  structural cells. Each individual cell is the smallest
representative volume taken from the fiber achitectural system. It is then
treated as a space structure with the endowed representative achitecture, rather
than a material with a set of effective continuum properties. The basic idea is to
identify the unit cell's nodal supports, similar to the nodal points of a
conventional finite element. By the introduction of the principle of virtual
work in solid mechanics and structural analysis, the matrix [k], the stiffness
of the cell can be derived to relate nodal displacement vector to nodal forces for
a cell. In this section, the utilization of fiber architecture model and the finite
cell modelling will be discussed.

Unit Cell Characterization by CAGM

The analysis of textile composites depends directly on fiber architecture of the
composites. The fiber achitecture of a textile composite can be accurately
characterized by a computer aided geometric model (CAGM). The details of
development of this model is given in Pastore et al.’s paper [10]. This model
considers the relative motions of the tracks and columns in the braiding
machine and generates a mathematical simulation of the machine process.
Thus, the detailed internal geometry of a textile reinforced composite can be
visualized and the unit cell of the composite can be identified. Figure 1 shows
the fiber achitecture of a 3-D braid with an inclined cut-out generated by CAGM.
The next step is to find out what the unit cell structure is in the braid.

In the paper (9], a unit cell structure shown in Figure 2 was proposed and
assumed to represent the entire structure of a braid. The unit cell structure was
used to simulate the behavior of 3-D braid carbon/carbon composites. The
recent development of CAGM suggests a finer and more accurate description of
unit cell structure. By simulating the yarn movements across tracks and
columns of a loom and taking account of braiding direction, unit cell
conformation can be traced through 3-D geometric index of data. From the
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data, space nodes of a braid can be defined by the interweaving, or interlock, of
yams. Once the space nodes are known, the braid is divided into small cells by
connecting the space nodes with straigh lines. In each cell, the fiber
architecture can be identified and treated as a combination of several basic
patterns. Figure 3 shows all possible patterns in a 3-D braid generated by 1x1
column/track movement. In practical case, a 3-D braid usually contains
several patterns.

For instance, Figure 4 shows top view of a cross-sectional cell patterns of
a 3-D braid fabricated by a loom of 4 tracks and 20 columns. Figure 4.a shows
the cell patterns after a column/track movement, and Figure 4.c shows the cell
patterns after next column/track movement. Figure 4.b and Figure 3.d shows
the corresponding patten numbers of each cell, respectively. From Figure 4,
one can recognize the cell structures in the outer region differ from the ones in
the inner region of the braid. Therefore, the CAGM can provide the
information of the various element types, i.e., central and boundary elements,
for finite element modelling. Figure 5 shows the space fiber structure formed
by a loom of 10 tracks and 4 columns under 4 column/track movements.

Finite Cell Modelling

The FCM is based on the concept of fabric unit cell structure and structural
analysis. The composite is considered as an assemblage of a finite number of
individual structural cells with brick shape. Each unit cell is then treated as a
space structure with the endowed representative architecture.

The key step in the formulation of the problem is the identification of the
unit cell's nodal points. As mentioned in the previous section, the CAGM
provides not only the detailed fiber architecture of each unit cell but also the
coordinates of each node. In this model, the yarns which pass by a node are
considered as intersected each other and hence, can be treated as either pin-
jointed two-force truss members or rigid connected frame members. With this
consideration, the interaction at the yarn interlacing is not treated in this
modelling. Thus, by treating a unit cell specifically as a pin-jointed space
truss , a 3-D truss finite element technique may be employed for the
mechanistic analysis.

In order to include the effect of matrix, which is subjected to tension or
compression under the deformation of yarns, the matrix is assumed to act as
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rod members, connecting the two ends of a given set of yarns in the unit cell.
Hence, the matrix plays a role in restricting the free rotation and deformation
of yarns.

Let ajj represent the value of member deformation g; caused by a unit
nodal displacement rj. The total value of each member deformation caused by
all the nodal displacements may be written in the following matrix form:

(@) = [al{n} 1)

where [a) is called the displacement transformation matrix which relates the
member deformations to the nodal displacements. In other words, it represents
the compatibility of displacements of a system.

The next step is to establish the force-displacement relationship within
the unit cell. The member force-deformation relationship can be written as:

Q) = [K](g (2)

The principle of virtual work states that the work done on a system by the
external forces equals the increase in strain energy stored in the system. Here,
the nodal forces can be considered as the external forces of the unit cell.
Therefore, if (R} represents the nodal force vector, it follows that

©Tw) = @TQ (3)

where (r] and (g} are virtual displacement and deformation, respectively.
From Equations.(1) and (2), the followirg equations can be derived:

R} = [Kir) (4)
where: (R} = nodal forces
(K] = (a]T(K'I(a] = stiffness matrix of the unit cell

{r] = nodal displacements

Using Equation (4), the nodal force and the nodal displacements of a
truss unit cell are related by the stiffness matrix of the unit cell.
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In present study, each unit cell is modelled to be a frame structure.
Therefore, axial, flexural, and torsional deformations of the yarns are
considered in the analysis. The unkown displacements at the joints consist of
six components, namely, the x, y and z components of the joint translations and
the x, y and z components of the joint rotations. Therefore, for a 9-node frame
unit cell, there are 54 degrees of freedom in this unit cell. Suppose that a
member i in a space frame will have joint number j and k at its ends. The
twelve possible displacements of the joints associated with this member are also
indicated in Figure 6. To obtain the stiffness matrix of a unit cell in a simple
way, the stiffness matrix of a member is constructed first instead of
construction of displacement compatibility matrix.

The member stiffness matrix is obtained by a unit displacement method.
The unit displacements are considered to be induced one at a time while all
other end displacements are retained at zero. Thus, the stiffness matrix for a
member, denoted [Sp], is of order 12x12, and each column in the matrix
represents the forces caused by one of the unit displacements. The layout of the
12x12 matrix is shown in Figure 7. In general case, if the member axes are not
ceincident with structural axes, the member stiffness should be transformed by
a rotation transformation matrix. The rotation matrix [Ry] for a space frame
takes the following form:

] o 0 0
Ryl = 0 [T o o (5)
0 0 m o
0 0 0 m
where the matrix [T] for a circular member is as follows:
Cx Cy Cz
(T] = |-CxCy/Cxy Cxy -CyCz (6)

CZCxz 0 CyCxz

where Cy = (xi - x;)/ L; Cy = (yk - yj) / L; Cz = (z - 2j) / L; L=l(x - x))2 + (y)¢ -
y3? + (@ - )21V% Cxz=(Cx2 + CzH) 12

Thus, for a member, the stiffness matrix [Syp)] in structure axes may be
expressed in the following form:
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Sap! = Ryl (SylRy] ™

Then, assembly of the contributions from each member to a joint, or a node,
yields the stiffness matrix of a unit cell.

With the stiffness matrix of a unit cell being known, for a structural
shape which consists of a finite number of unit cells, a system of equations for
the total structural shape can be assembled using the individual cell relations
following the finite element methodology. From the solution of the equations,
the stress distribution and deformation of the entire structure under applied
load can be calculated and analyzed.

NUMERICAL SIMULATIONS ’

The FCM was implemented by the use of computer simulation. With basic pa-
rameters in a unit cell, such as yarn elastic modulus, fiber volume fraction,
yarn orientation and unit cell dimension fully characterized, the applicability
of the FCM to predict the structural response of composites will be demonstrated
experimentaily.

Simple rectangular coupons of the 3-D braided carbon-carbon composite
were fabricated and characterized by tensile testing. In the present case, the
track/column displacement ratio is 1/1. The material used for this study is T-
40 carbon fiber, with a fiber modulus of 276 GPa. The fiber volume fraction of
the composite is 35%. The modulus of the carbon matrix is taken as 8.3 GPa for
prediction. Since the dimensions of a unit cell are considered to be the center
lines of members of the unit cell, part of the bars lie outside the unit cell in real
case. An averaging method for the determination of the cross-section areas of
the bars was used. Assuming that all the fiber-bars of the composite have the
same cross-sectional area, and that all the matrix-bars of the composite have
the same cross-sectional area as well. Thus, for a specimen with dimension of
HxWxT, the area of a fiber-bar can be obtained as

Ag= 0.35HWT / (totalfiber-barlength)

the area of a matrix-bar can be expressed as

[y




Ay = 0.65HWT / (totol matrix-bar length)

Accordingly, the unit cell dimension is 0.635x 0.22x 0.19 cm3, Agis 0.0032 cm?2
and Ap, is 0.004 cm?2

Figure 8 shows the loading condition and boundary conditions of a
specimen. A specimen in length of 10 column/track movements is considered
for analysis purpose. The applied load was divided into several steps on
account of the possible nonlinear load-deformation behavior due to geometrical
conformation. Figure 9 shows both experimental and numerical stress-strain
curves of ¢/c composites under simple tension. From the figure, the stiffness of
the composites predicted from FCM showed a lower value than experimental
results; while FGM predicted a higher value. For the FCM, the consideration of
yarns and matrix as structural bars may result in a lower stiffness in matrix-
bar axis. Although the matrix-bars play the role in restricting the free
deformation of the yarns in FCM, they show larger deformation under tensile
load. Consequently, the nature of the finite cell modelling tends to predict a
lower value of stiffness of a structure. Further studies on this model to
investigate the interaction between fiber and matrix have to be conducted. The
load transfer mechanism between fibers and matrix as well as the effect of
fiber achitecture in a unit cell needs to be explored. This may lead to a 3-D
solid element modelling on the unit cell of a braid composite. For the FGM, the
higher predicted stiffness may be attributed to the use of fiber data as an input
for our prediction. In order to reflect the fiber breakage and degradation
during manufacturing, the use of processed yarn data may be more
appropriate.

CONCLUDING REMARKS

A unified mechanistic method, incorperating the computer aided geometric
modelling and finite element procedure, has been presented to predict the
mechanical behavior of 3-D braid composites. The CAGM has been shown to
provide the detailed information of the fiber architecture of 3-D braid
composites. The present analysis includes the consideration of the interior and
boundary elements of the entire cross-section, and consideration of bending
moment of the yarns. By appropriate choice of yarn mechanical properties and
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precise determination of dimension of a unit cell, the finite cell modelling has
been shown to be an adequate model for 3-D braided composites as a first
approximation. The precision of the model may be further modified by an
alternate method of representing the matrix effect.

In order to expand the usefulness of the FCM to more complex modes of
deformation such as bending and shear, the interaction between reinforcing
yarns and the matrix must be examined. The prediction of the stress-strain
curve up to failure requires the establishment of a suitable failure criterion.

- -
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Figure 1. Fiber Architecture of a 3-D braid and a cut-out
view generated by CAGM.

Figure 2. Unit Cell Structure presented in [9]




N

14

[ ]

17

AN

“sn

Figure 3. Element Patterns of a 3-D (1x1) braid
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Figure 4. A cross sectional cell patterns generated by two
column/track movements.




Figure 5. Unit cell Structures formed by a loom of 10 tracks
and 4 columns under 4 column/track movements.
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' Figure 6. Twelve possible displacements of two joints
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Figure 7. Stiffness matrix of a member in a unit cell.
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Figure 8. A pecimen of ten column/track movements
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Figure 9. Comparison between experimental and numerical
results of 3-D braided carbon/carbon composites.
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